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ABSTRACT 

This report is a survey of the function approximation routines 

available for the BRLESC computer at Aberdeen Proving Ground as of 

April 1969•  It includes a description of each routine and some general 

discussion. 
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I.  INTRODUCTION 

The approximation of a function by another function is a frequent 

computing problem.  The primary purpose of this report is to list the 
1* 

readily available routines of this type for the BRLESC  at Aberdeen 

Proving Ground, as of April 1969-  The majority of these routines, and 

descriptions of them, are available through the Computer Support 

Division, Systems Programming (Building 328, Room 213). Anyone who is 

considering Curve fitting is strongly urged to examine the existing 

programs before attempting to code his own. 

In nearly all of these routines the original function is 

represented by a table of N data points, (X.,y.), i=l,2,...,N, where y. 

is the dependent variable (the function value we wish to approximate) 

and X. is either a single dependent variable, x., or a vector of 
1 T 1 

variables, X. = (x... ,x. „. . .. .X.,T) . The immediate goal of most of the 
'     l    il' i2'   '   lN 

routines is to find the "best" values for M parameters A = (a,,a ,...,aM) 

in an equation F(X,A), the approximating function, which has been 

chosen to represent the table of data. 

In all these routines, the parameters, A, are chosen so as to 

satisfy some prescribed constraints or to optimize some measure of the 

goodness of the approximation.  Some of the routines do both.  The most 

popular measure is the variance of residuals (the sum of squares of the 

residuals) over the set of data being fitted.  Fitting with this 

measure is called the "method of least squares". Most numerical 

analysis textbooks have some discussion of the principle of least 

squares (e.g. Hildebrand ). Most of the fitting programs for BRLESC 

are based on this principle which states that the "best" approximation 

is that which minimizes the sum of squares of the residuals. 

The only approximation routines we consider are for interpolation 

or curve fitting. We will not discuss the approximations used for any 

of the standard functions (SIN, EXP, etc.), nor will we consider any 

References are listed on pages kO  and kl. 
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integration routines. Undoubtedly, some useful programs were overlooked, 

other good BRLESC approximation routines may be completed in the near 
2 ' 3 future, and FORTRAN versions of the most useful FORAST routines will 

be made.  (The MULTIPLE REGRESSION and NONLINEAR LEAST SQUARES are now 

available in FORTRAN.) 

In this report we first list the FORTRAN and FORAST function 

approximation routines which were located and give a brief description 

of them.  We then have some general discussion of these programs. 

Finally, we discuss each routine in a little more detail, give 

references, point out some difficulties, and indicate some advantages 

and disadvantages of some of the routines. 

Instructions for using many of the routines are included in the 

appendix. 

II.  LIST OF ROUTINES 

A. Standard FORTRAN and (FORAST) Subroutines 

Interpolation Subroutine 

DVDINT (D.D.IN) 

Least Squares Subroutines 

MATINV,  FNEQS  (S.N.E..  F.N.E.,  etc.) 
GENLSQ (G.L.SQ) 
POLYLS (P.L.SQ) 

Function Minimizing Subroutines 

FNMIN (FN.MIN) 
FDMIN (FD.MIN) 

B. FORAST Fitting Programs 

LEAST  SQUARES PROGRAM 
MULTIPLE REGRESSION (FORTRAN program available) 
NONLINEAR LEAST SQUARES (FORTRAN program available) 
PIECEWISE QUARTIC FIT 
CUBIC SPLINE 
LEAST SQUARES CUBIC SPLINE 
POLYGONAL CURVE 
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C.  Other FORTRAN Routines 

CONSTRAINED NONLINEAR LEAST SQUARES (Program) 
NONLINEAR LEAST SQUARES FOR CORRELATED DATA 
NLPROG (Subroutine to minimize constrained functions) 

The "standard" FORTRAN subroutines in the above list are available 

on cards from Systems Programming, Computer Support Division.  Each of 

these subroutines is equivalent to some FORAST Subroutine on the FORAST 

compiler tape.  Three of the FORAST programs, LEAST SQUARES PROGRAM, 

MULTIPLE REGRESSION, and NONLINEAR LEAST SQUARES, are also available 

from Systems Programming. Using routines from this source has several 

advantages:  The routines are available in a standard usable form. 

Descriptions are available. The routines are completely checked out. 

And advice and assistance are available if needed.  The other FORAST 

programs and the "other" FORTRAN routines have special features which 

may compensate for their defects in availability, standardization, etc. 

We have classified these routines as interpolating routines, 

fitting routines, least squares routines, and function minimizing 

routines.  Such a division must be arbitrary. We have elected to call 

the method "interpolation" if the principal result is the value of the 

approximating function at a prescribed value of the independent variable. 

If the main output of the routine is an equation or the values of 

parameters in a prescribed equation, we call it a "fitting" routine. 

Those fitting procedures which use the principle of least squares are 

referred to as "least squares" routines. 

It seems to be general practice to drop the adjective "linear" in 

discussion of linear least squares and to use the adjective "nonlinear" 

when referring to least squares procedures which are not necessarily 

linear in the unknown parameters.  This practice has been followed 

here in naming and discussing the routines.  To further complicate these 

titles, the adjectives "general" and "polynomial" are used to denote 

the type of terms permitted in linear least squares. 



The function minimizing routines are separated from the other 

routines because the user is free to choose the measure of the goodness 

of the approximation.  The user pays for this freedom with coding and 

some loss of confidence in the results. 

DVDINT (D.D.IN in FORAST) 

This standard subroutine uses divided differences to approximate 

the value of y corresponding to x from a table (x.,y.), i=l,2,...,N, 

ordered on x.  The approximating function is an M-th degree polynomial 

through M + 1 points in the neighborhood of x. 

MATINV, FNEQS (S.N.E. , F.N.E., etc. in FORAST) 

The MATINV subroutine is the standard FORTRAN subroutine for 

solving a system of linear equations.  The FNEQS subroutine may be used 

to help convert raw data to the normal equations of least squares and 

the MATINV subroutine may be used to solve this system.  In FORAST, the 

F.N.E. may be used to help form the normal equations, in the form of an 

augmented upper triangular matrix, and the SY.SNE or SY.INV used to 

solve the system.  One can also use the F.O.MAT to form the full 

rectangular augmented matrix from the triangular form and use the S.N.E. 

or MAT.INV. to solve the system. 

It is generally better to use one of the next two subroutines for 

linear least squares. 

GENLSQ (G.L.SQ in FORAST) 

Starting from a table of data (y. ,cp (X.) ,cpp(X. ),.. . ,cpM(X.)), 

i=l,2,...,N, this routine carries out a linear least squares fit.  It 

finds A = (a1,a2,...,aM) so that U(A) =/_ji=1(y±  ~ £1=1*1^0^)) 
is a 

minimum with respect to the a.'s. This routine will also compute some 

information to help the user analyze the fit:  the root-mean-square 

1 «N 
error, (U(A)/(N-M) )5; the residuals, R. = y. - ) . _a.cp.(X.)j a., the 

1   1 i~jj-l  J J  1   j 

estimates of the error in a.: and t. = a.la.,  the estimates of the 

significance of a .. 
J 10 



The FORAST subroutine allows more flexibility in the storage of the 

input data and permits more flexibility in weighting or eliminating data 

points. 

POLYLS (P.L.SQ in FORAST) 

This is simply a special case of GENLSQ (G.L.SQ) for polynomial 

least squares with one independent variable.  The input is N pairs of 

numbers (x.,y.). The program minimizes the equation 

VN      VN    'I? 
U(A) = ) ._,(y. - ) . ,a.x"?~ ) .  The FORAST program has an option for 

dropping some of the powers of x. 

FNM1N (FN.MIN in FORAST) 

This is a standard subroutine for finding the minimum of a function 

of several variables without using derivatives.  The least squares 

programs we have just discussed find the minimum of U(A) = ( ) ._nR.) , 
L-ji—1 i 

where the R. are linear in a.. ,a_,. . . ,EL,.  This minimizing program could 

be used to minimize U(A) if the R. are not linear in the a.'s or if 
i J 

some other measure of the goodness of the fit were used.  The user must 

supply programming to evaluate U(A). 

FDMIN (FD.MIN in FORAST) 

This is another function minimizing routine.  It uses the first 

partial derivatives of the function to be minimized.  The user must 

supply programming which evaluates U(A) and dU(A)/äa., j=l,2,...,M. 
J 

LEAST SQUARES PROGRAM 

This complete FORAST program reads control cards that specify the 

type and form of a linear least squares fit, reads the data, computes 

the fit, and prints the coefficients, the approximate function value at 

each point, the corresponding residuals, the root-mean-square error, and 

the "sigma and t" error indicators. 
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MULTIPLE REGKESSION PROGRAM 

This complete FORAST program is similar to the previous program in 

set up and control.  The very important difference is that the given 

approximating equation is a listing of possible terms to be included in 

a linear least squares fit.  This routine selects an equation that has 

only significant terms and then carries out a least squares fit to find 

the best coefficients for this equation.  In addition to output like the 

LEAST SQUARES PROGRAM, this program prints a running account of the 

terms added to or dropped from the tentative equation and prints the 

terms in the final equation. 

NONLINEAR LEAST SQUARES 

This complete FORAST program is a program for finding the "best" 

parameters in the least squares sense for an approximating function 

which is not linear in all the parameters.  If the function F(X,A) is 

used to approximate y, the best approximation in the least squares 

sense occurs when U(A) = )-_-,(y. - P(X-^A))  is a minimum.  F(X,A) is 

approximated with the linear terms of Taylor's series (i.e., 

- VM 

F(X.,A) = F(X.,A) + ) . ,Aa.dF./da., where A is a good initial 

approximation to A, and dF./da. is the partial derivative of F(X,A) 
— d 

evaluated for A = A and X = X.). The standard procedure for linear 
l 

least squares is used to find Aa., j=l,2,...,M, so  that 
J 

U(M) ). ,(y. - F(X,A) - ) . ..Aa.SF./da..)  is minimized. Then a., 
£-a=lwi ^.1=1 .1    i  .r .i' 

j=l,2,...,M, is replaced by a. + pAa., 0 < p ^ 1. With luck, and a 
J     J 

good initial guess, this method will converge to the "best" answer. 

This program requires more input information than the linear LEAST 

SQUARES PROGRAM. In addition to output like the LEAST SQUARES PROGRAM, 

this program prints information about each iteration. 
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PIECEWISE QUARTIC FIT 

This complete FORAST program approximates a bivariate table of data 

(x.,y.), i=l,2,...,N, with a series of connected quartic polynomials. 

As many points as possible (without exceeding a specified least squares 

error) are placed in each succeeding polynomial.  The resulting 

approximating function is continuous and has continuous first derivatives. 

CUBIC SPLINE 

This complete FORAST program fits N data points (x.,y.), i=l,2,...,N, 

with N - 1 cubic equations. The approximating function passes through 

each data point, is continuous, and has continuous first and second 

derivatives. 

LEAST SQUARES CUBIC SPLINE 

This complete FORAST program fits N data points (x.,y.), i=l,2,...,N, 

with a prescribed number, say K, cubic equations.  The user specifies the 

abscissas for K + 1 "break points".  The program finds the K + 1 

corresponding ordinates so that the cubic spline function F(x), through 

these break points, makes ) ._-,(y. - F(x.))  a minimum. 

POLYGONAL CURVE 

It is sometimes useful to approximate bivariate data by a series of 

connected straight lines. This program uses dynamic programming to 

locate the best values of the independent variable for the ends of a 

specified number of straight lines. For these "break points", the 

approximating polygonal curve is the best in the least squares sense. 

CONSTRAINED NONLINEAR LEAST SQUARES 

Sometimes we want to approximate a set of data (X.,y.), i=l,2,...,N, 

with a function F(X,A) and at the same time satisfy a number, say K, 

inequality (and/or equality) constraints G (A) ^ 0 (or G (A) = 0), 

k=l,2,...,K.  This FORTRAN program finds an approximate answer to this 
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problem by minimizing the function U(A) = )._,(f.(A)) , where 

f.(A) = y. - F(X.,A) for i=l,2,...,N, and fN+k(A) = GR(A) for 

unsatisfied constraints (f  (A) = 0 if G (A) is an inequality 

constraint greater than 0). 

The user must supply three subroutines:  FCODE to evaluate f.(A), 

PCODE to evaluate of./da., j=l,2,...,M, and SUBZ to set up some initial 

conditions.  The program uses a combination of the differential 

correction method (used by the FORAST NONLINEAR LEAST SQUARES program) 

and steepest descent to minimize U(A).  This method should converge in 

most cases. 

NONLINEAR LEAST SQUARES FOR CORRELATED DATA 

This FORTRAN routine is somewhat different than the other least 
— T 

squares routines.  The data points consist of X. = (x., ,x  ,...,x  ) ; 

m., the standard error of weight one: and R., the correlation matrix of 
i J 

cofactors.  The object of the program is to find %.   = X. - X., 

i=l,2,...,N, and A = (a^a^ . . . ,3^) sothatU(^) = ^^(^ \) " l±  
is 

minimized and F(X. + %.,A) = 0 for i=l,2,...,N. The user must supply 

a main program which sets up the input and controls the iterations, and 

a subroutine to compute F(X. + §.,A), and the partial derivatives of 

this F with respect to §  , k=l,2,...,K, and a., j=l,2,...,M. 
IK j 

NLFROG 

This is a function minimizing FORTRAN subroutine which permits 

constraints.  If U(A) is the function to be minimized subject to the 

inequality constraints G, (A) S 0, k=l,2,...,J, and the equality 

constraints G (A) = 0, k=J+l,J+2,...,J+K, this subroutine is designed to 

^-iJ r-iJ+K   p    i 
minimize P(A,p) = U(A) + p V  I/G (A) + )k=J+1G (A)/p  over the region 

Q = (A:Gk(A) £ 0, k=l,2,...,j] for p=P1,pg,...,pL with Pr > pr+1 > 0 

Ik 



until pT )  ,l/G (A) < 9.  If the original estimate for A is not in Q, 

the routine will first try to find an initial A which is in Q.  Actually, 

NLFROG is one of four different routines depending on the method used 

to minimize P(A,p).  Two of these are direct search methods which do not 

require derivatives.  One is a quasi- Newton method which uses first 

derivatives (the partials of F and G with respect to a.).  The other 

routine uses Newton's method, which requires first and second partial 

derivatives. 

The user must code a main program to supply the initial data and 

control parameters for NLPROG.  He must also supply a subroutine to 

evaluate F and the G, and, if needed, a subroutine to evaluate their 

derivatives. 

III.  GENERAL DISCUSSION 

A.  Classification of Routines 

In the previous section we characterized the BRLESC function 

approximation routines as FORAST or FORTRAN routines, as standard sub- 

routines or something else, and as "interpolating", "fitting", or 

"function minimizing" routines. The separation between FORAST and 

FORTRAN routines is necessary and definite.  The distinction between the 

standard subroutines and other routines is also useful and quite clear. 

(The standard subroutines are all on the FORAST compiler tape and 

equivalent FORTRAN subroutines are available on cards.) The third 

classification is very arbitrary.  The broadest definition of any of 

the three terms includes all the routines. An "interpolating" routine, 

by our definition, is one that produces a numerical estimate of the 

dependent variable for a given set of the independent variables. Thus, 

we had only one interpolating routine, the standard divided difference 

interpolation routine.  It is convenient to classify the three 

"function minimizing" routines separately because the user is free to 

choose the measure of "goodness" of the fit. All the remaining "fitting" 

routines except the CUBIC SPLINE use the principle of least squares. 
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There are several other classifications which are convenient for 

some purposes.  We can separate the bivariate routines and the routines 

that can be used with more than two variables. We can also classify 

the routines by continuity, smoothness, or by the measure of goodness 

of the fit.  Some of the routines use or permit constraints.  These 

topics will be taken up in the next paragraphs. 

B.  Goodness of Approximation and Constraints 

Approximating functions generally satisfy some set of constraints, 

optimize some measure of goodness of the fit, or do both.  The 

approximating functions for two of our BRLESC routines, the DVDINT and 

the CUBIC SPLINE, are completely determined by constraints.  For the 

three function minimizing routines, the function to be minimized is 

selected by the user (and computed by a user coded program). All the 

other routines use the principle of least squares and minimize the sum 

HN V   2 of squares of the residuals, ) ._,R. 

The user of the function minimizing routines may choose the sum of 

squares of residuals, U(A) = ) ._-,R..> as the function to minimize.  (This 

r^N  2 i 
is equivalent to minimizing Q  ._-,R.)£, the so-called "Euclidean" norm.) 

Another useful choice is U(A) = Maximum|R.|, i=l,2,...,N, the 

"Tchebycheff" or "uniform" norm used to find the minimax or Tchebycheff 

solution. The norm U(A) = ) ._,|R.| is another frequently mentioned 

choice.  The form of the approximating function is selected by the user. 

In some of the least squares routines the form of the approximating 

function is specified by the routine.  In others the user may select 

this function.  The residuals for all the least squares routines, except 

the NONLINEAR LEAST SQUARES FOR CORRELATED DATA program, are the 

difference between the given value of the dependent variable and the 

approximated value (i.e., R. = y.-F(X.,A)). The measure of goodness of 
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the fit is the unbiased estimate of the standard deviation, 

VN  2     h 
ERMS = Q ._-|R-/(N_M)) >  where N is the number of data points and M is 

the number of coefficients determined by the routine. 

The NONLINEAR LEAST SQUARES FOR CORRELATED DATA program is somewhat 
T 

different. The N data points consist of X. = (x... ,x. _, . .. .x.„) , the 
l    ll i2   ' lK ' 

measured values of the variables; m. _, the standard error of weight one; 

and R., the correlation matrix of cofactors.  The coefficients 
1' 

A = (a, ,a „,. . . ,a^) and the correction vectors %,.,   i=l,2,...,N, are found 

VN  T      -1 
so that F(X.+|..A) = 0 for all i and u(|) = ), n|.(m.R.)  E. is a 

l 

minimum.  (U(^)/(N-M))  is used as the measure of goodness of the fit. 

The FORTRAN routine, CONSTRAINED NONLINEAR LEAST SQUARES permits 

constraints.  For this program the user must compute the constraints 

G., j=l,2,...,J as well as the residuals R., i=l,2,...,N and their 

first derivatives so he may define them as he wishes.  The routine 

VN  2  VJ  2 VN  2      i 
minimizes U*(A) = ). R. + ) , ,G ..  The routine prints () . R./(N-M))a 

and several other quantities to help determine the validity and goodness 

of the approximation. 

C.  Bivariate Routines 

Some of the routines are designed to handle many variables but a 

few are restricted to two variables, a dependent variable y, and an 

independent variable x. All of these approximate y by a polynomial or 

set of polynomials in x.  The routines restricted to two variables are 

DVDINT (D.D.IN), POLYLS (P.L.SQ), PIECEWISE QUARTIC FIT, CUBIC SPLINE, 

LEAST SQUARES CUBIC SPLINE, and POLYGONAL CURVE. The first of these 

routines is polynomial interpolation. The others are substitutes for 

polynomial interpolation which may remove or reduce the main objections 

to interpolation. 

1.  Interpolation. We have defined an interpolation routine as one 

which supplies a value of the independent variable.  This is a very 
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narrow definition but it describes the purpose of the DVDINT subroutine 

quite well  From experience we think of interpolation as a process by 

which we can approximate the value of a dependent variable between 

values given in a table.  If we include approximation for the given 

points as well, we are describing a process that approximates the 

tabular function by some other function.  In this broader sense, all the 

routines discussed in this report are interpolation routines. 

Any text on numerical methods devotes some space to interpolation. 

There is usually some mention of interpolation involving more than one 

independent variable and some discussion about using various functions, 

including trigonometric functions to interpolate with; but the major 

portion of the discussion is restricted to interpolation by polynomials. 

Most of the familiar methods of interpolation (e.g., Aitken's iterative 

interpolation, Lagrange's interpolation formula, Newton's forward and 

backward difference methods, divided difference, etc.) are just different 

ways of evaluating an M-th degree polynomial through M + 1 points near 

x in a table (x ,y.). The Newton's interpolation formula with divided 

differences was chosen for the standard interpolation routine (DVDINT 

in FORTRAN, D.D.IN in FORAST).  This routine is easy to use, efficient, 

and accurate.  Unfortunately, it is so familiar and well documented that 

we do not give its use enough thought, let alone check the results. 

Polynomial interpolation has some drawbacks:  If we consider the 

approximation over the entire range of the table, the function changes 

at most of the data points and the derivatives fail to exist at these 

points, even though the function itself is continuous. A high degree 

polynomial may oscillate wildly and errors in the data tend to augment 

this oscillation. This is pointed out in the Example . Finally, it is 

too easy to overlook gross errors in the data. 

2.  Other Bivariate Routines. The other bivariate routines are, in 

a real sense, substitutes for polynomial interpolation which remove or 

reduce one or more of the objectionable features of polynomial 

interpolation.  These routines, except CUBIC SPLINE, use least squares 

and consequently reduce the effect of small errors.  Some of these 

18 



routines produce all the residuals, hence, large errors in the data 

points can be discovered.  The other routines use two or more polynomials 

connected at points we call "break points". 

The approximate function from the CUBIC SPLINE routine passes 

through each data point. A different cubic polynomial is used between 

each pair of data points.  This approximation has continuous first and 

second derivatives. 

The x coordinates of the break points for the LEAST SQUARES CUBIC 

SPLINE routine must be chosen by the user.  The routine chooses the 

corresponding y coordinates so that the cubic spline function through 

the break points produces the minimum sum of squares of residuals.  This 

approximating function also has continuous first and second derivatives. 

The break points for the POLYGONAL CURVE are selected by the program. 

(The user must state the number of them to be used.) There are no 

derivatives at these break points since the straight lines which meet 

there have different slopes. 

The PIECEWISE QUARTIC FIT routine selects its own break points 

from the data points. As many data points as possible, without causing 

too large an ERMS error, are included between each break point.  The 

approximating function passes through each of these break points and 

has a continuous first derivative there. 

With the exception of the divided difference interpolation 

subroutine, the polynomial least squares subroutine, POLYLS, is the 

easiest of the bivariate routines to use.  If a good fit can be made 

with a low degree polynomial, this is an excellent choice. Unfortunately, 

even with least squares, approximations with high degree polynomials tend 

to have undesirable oscillations. 

The bivariate routines, with the exception of POLYLS must have the 

data ordered on the independent variable. The DVDINT subroutine 

permits either increasing or decreasing ordering.  The other routines 

assume strictly increasing x.'s. 
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3-  Smoothness. Although it is possible to use multivariate 

approximating functions which have discontinuities or other disagreeable 

features, the usual function chosen is continuous and has continuous 

derivatives throughout the entire range of definition.  This is not as 

generally true for bivariate approximating functions.  Approximation by 

polynomial interpolation produces an approximating function which does 

not have derivatives at most of the data points. A least squares fit over 

the entire range of the data produces an approximating function with 

continuous derivatives of all orders; but fitting with a low degree 

polynomial may give a poor approximation at the data points, and fitting 

with a high degree polynomial may give good results at the data points 

but unbelievable intermediate values. The PIECEWISE QUARTIC FIT program 

produces an approximation that has continuous first derivatives and 

should not oscillate too wildly.  The CUBIC SPLINE and the LEAST SQUARES 

CUBIC SPLINE programs produce an approximating function that has 

continuous first and second derivatives.  Spline functions have received 

a great deal of attention recently because of their "smoothness" 

properties.  In particular, the cubic spline function, say S(x), over 
2   2 

N ^ 3 data points, with d S/dx = 0 at x and x^ satisfies 

x_ XN 
r       2 22 I"   2     22 

(d S(x)/dx ) dx ^ I  (d f(x)/dx ) dx where f(x) is any continuous 
xl Xl 

function with continuous first and second derivatives which satisfies 

f(x1) = y±,   i=l,2,...,N. 

k.     Checking. A graph of the approximating function with the 

original data points superposed gives an excellent qualitative check of 

approximations in two variables.  Gross errors in the input data are 

evident; and unusual features of the results, such as excessive 

oscillation or poor approximation in some particular region, are obvious. 

This check requires extra work, but it is worthwhile. 
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D.  Least Squares 

Most of the fitting programs for the BRLESC are based on the 

principle of least squares applied to a discrete set of points (X.,y.), 

i=l,2,...,N.  It is assumed there is some function Y(x) for which 

Y(X.) = y. .  (X. may be a single variable or a vector, 
111       m 

X. = (x.,,x.„,...,x  ) .) The function Y(X) is to be approximated by a 

function F(X,A) where A represents the M unknown parameters a ,a ,. ..,SL.. 

The "best" fit in the least squares sense (for a particular function 

F(X,A) relative to a non-negative weighting function w(X), over the set 

of N data points) is achieved when A is found such that 

U(A) = V. w(X )(Y(X ) - f(X±,A))2  is a minimum.  For this to be 

meaningful, there must be at least as many data points as unknown 

parameters (i.e., N ^ M). We will assume w(x) = 1 in what follows. 

This is the most frequent choice. 

1.  Linear Least Squares Routines.  If F(X,A), the approximating 

function, is linear with respect to the M unknown parameters 

VN VJ 2 
a1,a2,...,aM we can write U(A)  = }_i±=:1(y±  " 2Jj=lajcpj^Xi^    where the 

cp.(X),   j=l,2,...,M,   are M suitable  functions  of X.     (As  far as the  fit 
J 

is concerned, the cp.(X) do not have to be defined except at the N data 
J 

points.  However, if the result is to be useful they should be well 

behaved and fairly easy to evaluate for all X in the range of the fit.) 

The function U(A) will be a minimum if äu/äa, = 0, k=l,2,...,M.  This 

is a system of M linear equations, called "normal equations", in the M 

unknown a.: 
J 

k=l,2,...,M. 

This can be rewritten in matrix notation as WA = V, where A is the vector 

•JJ T VN 
(a,a , . ..,a ) , W is the symmetric MxM matrix with ) ._cp. (X. )cp(X. ) 

21 



T 
as the element in row j column k, and V is the vector (v ,vp,...,vM) 

VN with v,   = ) .  ,cp. (X. )y. .     (If we consider cp. (X. )  to be the  j-th element 
k     Zji=lTkv i  Ji J    I 

in the i-th row of an NxM matrix P, and y. the i-th element in a vector 
T T      1 

Y, we can write W = P P and V = P Y. The normal equations are frequently 

written in the form PTPA = P Y.) 

The normal equations can be solved for A (A = W v) if W is not 

singular.  (The BRLESC routines for solving systems of equations use 

some form of Gauss elimination.) The accuracy of this solution depends 

on how well conditioned W is, how large M is, and the number of digits 

carried by the routine.  The BRLESC single precision carries about 16 

decimal digits which is equivalent to double precision on most 

computers. 

Classical theory recognizes three situations for linear systems of 

equations:  (l) The equations are inconsistent (e.g., x + y = 1, 

x + y = 2), hence no solution exists.  (2) The equations are not 

independent (e.g., x + y = 1, 2x + 2y = 2), in which case an infinity of 

solutions exist.  (5) There is a unique solution.  In theory it is 

easy to tell these cases apart, but in practice machine round-off error 

blurs the differentiation between the three cases. 

A frequent error in using linear least squares is to choose a set 

of functions, cp (X), k=l,2,...,M, which are not really independent over 

the data being fitted.  In one's zeal to find an answer quickly, it is 

easy to overlook even simple dependent relations among functions. The 

particular set of data and the limitation of machine accuracy sometimes 

make the choice of clearly independent functions more difficult.  For 
5 k h h example, if x is greater than 10 , x + 1 = x on BRLESC; hence, x and 

h 5 x + 1 are not independent on BRLESC for x greater than 10 . 

(Similarly, x" +1=1 for x > 10 .) 
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The easiest way to get a linear least squares fit is to use the 

FORAST LEAST SQUARES PROGRAM. This allows a fair amount of flexibility 

with a minimum of programming and gives "best" coefficients and some 

results to check the goodness of the fit.  Some formula cards and 

control cards must be prepared, but no coding is needed.  The MULTIPLE 

REGRESSION program is almost as easy to use.  It will select a 

statistically significant submodel, from a candidate model suggested 

by the user, before carrying out the final fit.  The two subroutines 

GENLSQ and POLYLS (G.L.SQ and P.L.SQ in FORAST) are also easy to use. 

The user must set up the data in the BRLESC in a specified form, call 

the subroutine, and then print, or use, the results as he wishes. All 

these routines produce some results for judging the goodness of the fit. 

The FNEQS and MATINV (F.N.E. and SY.SNE in FORAST) subroutines require 

more programming but they permit some additional freedom. 

2. Nonlinear Least Squares.  If F(X,A), the approximating function, 

VN 2 is not linear in the a., the minimization of U(A) = ) ._,(y. - F(X.,A)) 

is more difficult. The solution generally requires iteration and some- 

times the iteration fails to converge.  Three of the programs on our 

list are called "nonlinear least squares" programs. They are quite 

different. The simplest of the three programs and the easiest to use 

is the FORAST NONLINEAR LEAST SQUARES PROGRAM which is similar to the 

FORAST linear LEAST SQUARES PROGRAM. This program uses an iteration 

method for minimizing u(A) which is sometimes called the Gauss-Newton 

method, but is locally called differential corrections. 

The FORTRAN routine called CONSTRAINED NONLINEAR LEAST SQUARES is 

more difficult to use, but it has some features that might make it 

desirable.  It permits constraints by adding the squares of the 

constraints to the sum of the squares of the residuals. The resulting 

function is minimized with a combination of the method of steepest 
19 descent and the method of differential corrections  that should converge 

in most cases. 
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The third nonlinear least squares routine is the FORTRAN routine 

called NONLINEAR LEAST SQUARES FOR CORRELATED DATA. This routine uses 
  rn 

N data points in the form: X. = (x.n.x,-J...,x.J , the measured value 
l    il' i2'    iK 

of the i-th data point (Notice that no dependent variable is 

prescribed.); m., the standard error of weight one; and R., a KxK 

correlation matrix of cofactors. The nonlinear relation F(X,A) selected 

by the user is assumed to be exact at each of the N points.  The only 

errors being errors in each of the NK variables x  (i=l,2,...,N; 
IK. 

k=l,2,...,K). 

E. Function Minimizing Routines 

If the approximating function F(X,A) is "best" when some function 

U(A) is a minimum, the function minimizing routines are a rather natural 

choice of routine for finding the "best" value of A.  In the case of 

=lL(v2> least squares, U(A) = )   (R.) , where R. is the i-th residual. This 

choice of U(A) is frequently chosen because it is meaningful and easy 

to analyze.  More efficient routines are available for linear least 

squares problems, but the subroutines FNMIN and FDMIN have been used for 

some nonlinear least squares problems.  Two other fairly common choices 

VN 
of U(A) for discrete data are U(A) = ) .JR. | and U(A) = Maximum |R. |. 

Other useful choices are possible. FNMIN is the easiest of the function 

minimizing routines to use.  The user must code a subroutine that 

supplies U(A) for any given A. FDMIN requires dU(A)/äa , j=l,2,...,M, 
J 

in addition to U(A). Neither of these standard subroutines permit 

constraints.  One might reach a satisfactory solution for a constrained 

problem by adding a penalty function to U(A), but the nonstandard 

FORTRAN subroutine NLFROG is probably a better choice. As an 

illustration of a penalty function, suppose we want to minimize 

U*(A) =)-_yR- but have constraints G (A) = 0, r=l,2,...,S. We can 

VN     VS    2 
define U(A) = )  R + )  w G (A) where the w are positive weights. 

2k 



By adjusting the weights w , it is possible to obtain an acceptable 

approximation. The CONSTRAINED NONLINEAR LEAST SQUARES routine uses 

such a method.  The NLPROG routine uses this method to handle equality- 

constraints and a sum of the form )  w /G (A) for inequality constraints. 

F. Example 

This simple example was chosen to illustrate the effect of errors 

in data upon interpolation. The table of data (l,l), (2,lwU), (2.1,U), 
2 

(3,9) was generated by perturbing the y values of y = x . The data 

could realistically be for this function if the readings were accurate 

to within .5 or if they were accurate to within .01 with the y values 

for x = 2.0 and x = 2.1 reversed. What is unrealistic is that the "true" 

function is known. 

The approximating functions corresponding to linear, quadratic, and 

cubic interpolation, the cubic spline, and the best least squares 

quadratic were found. The DVDINT does not specifically display its 

approximating function as we do here. 

Linear Interpolation 

F(x) = 3.Ux-2.U      0 £ x £ 2 

F(x) = -Ux+12.U      2 <: x ^ 2.1 

F(x) = (50x-69)/9  2.1 s x ^ 3.55 

Quadratic Interpolation 

F(x) = (-7^0x2+259Ux-l7UUo)/llO   0 <; x < 2.1 

F(x) = (860x2-3886x+U728)/90    2.1 ^ x ^ 3.55 

Cubic Interpolation 

F(x) = (8o60x5-U7766x2+902UUx-U95U8)/990  0 ^ x ^ 3-55 
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Least Squares Quadratic 

F(x) = .99992l4-UUx2-.Oi9998l4-9x+.0585M4-7l 

Cubic Spline Fit 

F(x) = -5.58896^8l8(x-l)546.98896U8x-5.98896U8l8        l s x < 2 

F(x) = 55.8896^8l8(x-2.l)5+U9.57226005(x-2)5-U.85^6l9082x 
+14.14512781 2 s x < 2.1 

F(x) = 5.50802889(5-x)5+lO.OiT05895x-2l.0511T688        2.1 < x < 5 

The following list shows F(x) and R(x) = F(x)-x at x = 0, 1.5, 

and 2.5 for each of these approximating functions. 

Method F(0) = R(0) F(1.5) R(1.5) F(2.5) R(2.5) 

Linear Int. - 2.4 2.7 .45 6.222 - .028 
Quad. Int. -15.8 U.582 2.152 I+.5II -I.939 
Cubic Int. -5O.O 5.605 5-353 5.^97 -2.753 
L. Sq. Quad. .058 2.258 .008 6.258 - .012 
Cubic Spline - 2.4 k.ok6 1.796 4.680 -I.57O 

This table shows that increasing the degree of the interpolating 

polynomial will not necessarily produce better estimates of the "true" 

function. The extrapolation to x = 0 demonstrates why extrapolation 

from tabular data is so universally condemned. 

2 
From the viewpoint of approximating x from the table of data, the 

least squares quadratic was fairly successful. However, if we consider 

this fit without a priori knowledge of the "true" function, it too is 

quite poor.  The estimated standard error, ERMS, is .572. This is a 

rather large error for numbers between 1 and 9« The following table of 

coefficients "sigmas and t's" shows that the fit is really not very- 

significant. a_ and a, have no significance and even a, is of 

doubtful validity.  (A frequently used rule-of-thumb is to discard all 

coefficients with corresponding t's less than 2.) The residuals for the 

four points are -.02, .40, -.40, and .02, respectively. 
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j a.       a. t. 
J        J        J 

1 -9999     -575    1.738 
2 -.0200     2.164     -.009 
3 .0383    2.322     .018 

With only four points we can tell very little about the data from 

the residuals, but suppose we investigated the data and discovered that 

the y and y, had been interchanged.  The best least squares quadratic 

fit for the four points (l,l), (2,4), (2.1,4.4), (3,9) is 

F(x) = 1.00496l84x2-.02009923x+.01536407- 

This produces residuals (.00023, -.00499, .00504, -.00028), 

ERMS = .0071, and 

j       a. a. t. 
J J J 

1 I.OO4962 .00714 140.8 
2 -.020099 .02881 -.698 
3 .01536407 .02685 .572 

Again ap and a are not significant, but a, is.  If we refit without 

a and a we get F(x)=-9996245x with residuals (-.OOO38, -.0015, .OO83, 

-.0034) and ERMS = .0053-  Notice that the residuals are generally 

larger, but the unbiased estimate of error has dropped from .0071 to 

.0053 with the deletion of a~ and a,. 2 5 

IV.     DESCRIPTION OF ROUTINES 

The use of each of the routines will be discussed in this section. 

The details of implementing the routines are presumably contained in the 

program write ups, most of which are included in the Appendix. What I 

hope to do is briefly describe what the routine is supposed to do, 

indicate the amount of work necessary to use the routines, point out 

any unusual difficulties, and add any other remarks that seem pertinent. 
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DVDINT^  (D.D.IN3 in FORAST) 

This standard subroutine uses Newton's divided difference method of 

polynomial interpolation. The data (x.,y.), i=l,2,...,N, must be ordered 

on the dependent variable x, either strictly monotone increasing or 

strictly monotone decreasing. The value of x for which F(x), the 

approximating function, is desired must be between x,-(x„-x ) and 

x^+(x^-x^  ). The approximating function is an (M-l)th degree 

polynomial through M points near x. The resulting function is 

continuous and passes through each of the data points.  The derivative 

however is not continuous.  It fails to exist at most of the interior 

points. 

The most frequent error made with this subroutine is attempting to 

extrapolate outside the acceptable range. The program produces an error 

and halts when this occurs.  Occasionally someone specifies M greater 

than N and gets the same error print.  It is my opinion that if M 

greater than three is used, the user should not only substantiate his 

choice,  but also produce a graph of the fitted function with the data 

superposed. The inspection of such a graph can also reveal errors in 

the input data. 

Instructions for using this subroutine are in the appendix. 

MATINV,  FWEQS^     (S.N.E.,  F.N.E.  etc.?  in FORAST) 

The standard subroutine for solving a system of linear equations, 

MATINV, can be used to solve the "normal equations" associated with 

linear least squares.  For linear least squares the approximating 

function is linear in the M unknown coefficients.  That is 

F(X,A) = )._ a.cp.(x) where the cp.(X) are appropriately chosen, usually 

well behaved functions. We wish to find A = (a ,ap,...,a^) that 

minimizes U(A) = ) .,(y.- )  a.cp.(X.)) .  Such an A satisfies 
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9U(A)/9ak = 0,  k=l,2,...,M,  or 

rM -N VN 

Zj=i ajZi=icpk(xi)cpj(xi) = L±=i\ixi)yi>    k=1>2>--->M-   These are the 

so-called "normal equations". The formation of the matrix of 

coefficients for these normal equations is usually best accomplished by- 

using FNEQS, the form normal equations subroutine. These programs do 

not contain checking features, except for an error print from MA.TINV if 

a singular matrix occurs. The user is advised to use GENLSQ or POLYLS 

subroutines or the LEAST SQUARES PROGRAM instead. 

One frequently made error in using linear least squares fitting 

procedures is to choose functional terms which are not really independent 

over the given set of data. The result can be an equation that fits the 

particular set of data used, but is useless for intermediate points.  If 

possible, it is useful to reserve some data for an independent check of 

the fit. A reasonable rule-of-thumb is to have three or four data 

points for each unknown coefficient.  If M is large, the accumulated 

roundoff error in inverting even well behaved matrices may produce 

inaccurate results. 

Instructions for using these subroutines are in the Appendix. 

GENLSQ and POLYLS (G.L.SQ and P.L.SQ in FORAST) 

The GENLSQ, general least squares, routine is a standard subroutine 

for making a linear least squares fit. The input requirements are the 

matrix (cp.(X.)), (j=l,2,...,M; i=l,2,...,N) and the vector of the 

T 
dependent variable, (y ,y?,...,y ) , where the desired approximating 

VM 
function is F(X,A) = )   a.cp.(x). The POLYLS, polynomial least squares, 

is a modification of GENLSQ for polynomials in one dependent variable. 
m 

In this case, the user need only supply the two vectors (x  ,xp,...,x^) 

and (y1,y2,..' >y*,)   ,  and the subroutine automatically uses 

cp (x ) = x^" .  (The FORAST version allows more flexibility in choosing 

terms and permits weighting and omitting data points.) 
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These routines will compute a., j=l,2,...,M, which are "best" in 

VN 2 the least squares sense. That is, U(A) = )   (y.-F(X.,A))  is a 

minimum. These routines will compute the approximate values of the 

function F(X.,A), the residuals R. = y.-F(X.,A), the unbiased root-mean- 

square error ERMS = ( ) ._,(R. )/(N-M))5, the estimates of error for each 

coefficient a., and an estimate of the significance of the coefficients 
0 

t. = a ./o.. 
J   0  0 

These routines are easy to use although it is easy to omit or 

misplace one of the many dummy variables.  However, as with most 

programs, the most troublesome and very common errors are errors in the 

data. The problems with functional dependence and errors in matrix 

inversion if M is large are still present. An independent check of the 

resulting approximation is always desirable. 

Instructions for using these subroutines are in the Appendix. 

FNMIN and FDMIN^'     (FN.MIN9 and FD.MM10  in FQRAST) 

These two standard subroutines are function minimizing routines. 

They can be used to attempt to solve function approximation problems. 
T 

Suppose we wish to find A = (a.,ap,...,ELJ which makes U(A) a minimum. 

These two subroutines attempt to minimize U(A) directly.  FNMIN uses 

a direct search technique which does not require derivatives.  FDMIK 

uses a quasi-Newton method which does require first derivatives of U(A) 

with respect to each of the a.. 
0 

The user must supply the initial guess for A, some control 

parameters, and a subroutine to evaluate U(A), (U(A) and oU(A)/oa., 

j=l,2,...,M, for FDMIN). The programs are easy to use. However, they 

are rather slow (compared to linear least squares) and convergence to 

the "best" answer is uncertain. If the location of the minimum of U(A) 

is critical, it is desirable to check the results of these minimizing 
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programs. If the function U(A) is sufficiently well behaved, some 

analysis may confirm the results, but this is not always possible.  One 

partial check is to repeat the minimization from several different 

initial positions.  If the same solution is reached several times, the 

existence of at least a local minimum there is fairly well established. 

Most of the difficulties with these two routines have been from 

errors in programming the evaluation of the function or its derivatives, 

or from using a U(A) which does not have a minimum for finite A. 

Neither of these routines accept constraints. Constraints can 

sometimes be included by using a penalty function, but the more general, 

nonstandard, FORTRAN subroutine NLPROG should be a better choice. 

Instructions for using these subroutines are in the Appendix. 

LEAST SQUARES PROGRAM12, MULTIPLE REGRESSION1^, NONLINEAR LEAST SQUARES1^* 

These three routines are grouped together because of their many 

similarities. All three are complete FORAST programs (programmed by 

L. W. Campbell) which need the same type of formula definition cards 

and control cards. All of them have been modified since their 

respective descriptions were written.  In particular, the restrictions 

on the number of unknowns has been greatly increased in every case.  It 

is desirable to get a program deck directly from System Programming, 

Computer Service Division, along with information as to just what 

options and changes it contains.  It might also be wise to ask someone 

from Systems Programming to check the completeness and correctness of 

the first set of cards prepared for one of these programs. 

Despite some uncertainty as to just what the programs will do and 

their exact implementation, these programs should be given first 

consideration for any least squares fitting project. The fact that they 

are complete programs is both an advantage and a disadvantage. Since 

FORTRAN programs for MULTIPLE REGRESSION and NONLINEAR LEAST SQUARES 
are available. 
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they are complete programs, no coding is required (formula cards and 

control cards are used instead) and hence, no knowledge of FORAST (or 

FORTRAN) is needed. Also, the results usually receive at least a 

cursory check before being used for further computation.  On the other 

hand, the results of these programs are tabulations (or at best numbers 

on cards) and are not directly available for use in other routines, as 

the output of a subroutine would be. 

In all three programs, the parameters which control the fitting 

are punched on cards.  Each data point, say (V1,V2,...,Vk) is read in 

under the control of a FORMAT which may have to be changed. The user 

defines the form of the equation by "formula control" cards. These 

formula control cards may contain arithmetic operations and some 

subroutines:  SIN, COS, SQRT, LOG, EXP, ARCTAN and ARCSIN.  For example, 

Vl*EXP(v6) = V2**3+L0G(V3)+(VU+V5+SQRT(V7))$. This corresponds to the 

formula Vle="ao"+a1V2
5+a2ine(V3)-^(vU+V5+VT

5).  (The constant term, 

a , would be automatically included in the multiple regression program, 

unless specifically omitted, but not in the other two programs.) The 

output for all of these programs includes the coefficients, approximate 

function values, residuals, ERMS, and the "sigmas and t's" which indicate 

the variance and significance of the coefficients. 

The LEAST SQUARES PROGRAM is similar to the GENLSQ subroutine. 

There is an option which simplifies the input if a polynomial fit with 

one dependent variable is wanted. The LEAST SQUARES PROGRAM is still 

available but the Computer Support Division now recommends using the 

MULTIPLE REGRESSION program instead. 

The MULTIPLE REGRESSION program treats the model prescribed on the 

formula control cards as a candidate model. The program selects a 

statistically significant submodel and gives coefficients, residuals, 

etc., for this choice. A list of the terms as they are added or removed 

from the regression model and the change in ERMS is also given. 

Modifications for graphing and for an input tape for a companion program, 

"Prediction Intervals for Estimates from Linear Regression Models", 

are described in a description dated Nov. 19ÖT- 
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This very useful program is thoroughly described in Reference 13. 

The NONLINEAR LEAST SQUARES program is similar to the LEAST SQUARES 

PROGRAM.  Since the formula is not linear in the unknown coefficients, 

an iterative scheme, locally called "differential corrections", is used 

VN 2 
to attempt to minimize U(A) = ) •_l(y1 - F(X.,A)) . F(X ,A) is expanded 

in Taylor's series about the latest estimate of A, say A, discarding 

quadratic and higher terms. AA = (Aa, ,Aap, . .. ,Aa„) is found so that 

U*(AA) = ) 1=1(y\; - F(X.,A) - )  Aa dF(X. ,A)/3a ) is a minimum, as in 

linear least squares programs. Then, A is replaced by A + pAA, 

(0 ^ p ^ l) and the process is repeated until each |Aa.| < e., or the 

prescribed maximum number of iterations is exceeded. 

The input for this routine is more involved than that for the last 

two programs. F(X,A), the derivatives 3F(X,A)/da., j=l,2,...,M, and the 

form y. - F = ) ._ öF/öa. must all be described. The user must also 

supply (e, ,€p,...,e„) and initial values of A. The output of the program 

includes fairly detailed results for each iteration as well as F(X.,A), 

the residuals y. - F(X.,A), and the "sigma and t" values for the final 

iteration. 

This program is also fairly easy to use. The fact that it is not 

a subroutine is probably a good thing. The resulting approximation 

should be examined critically before it is accepted.  If one must have 

a subroutine, he can code his own program using the differential 

correction method and available linear least squares subroutines (or he 

can try one of the function minimizing subroutines). 

Instructions for using NONLINEAR LEAST SQUARES are in the Appendix. 

These instructions refer to Reference 13. 
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The author has used the MULTIPLE REGRESSION program, but has no 

direct experience with the other two programs in this section.  Several 

mistakes were made through carelessness: A FORMAT was wrong, a comma 

was omitted after a redefinition formula, and a plus sign was lost when 

a formula card was duplicated. Despite these minor troubles, which 

point out the necessity for checking all computer input no matter how 

simple, the MULTIPLE REGRESSION program was relatively easy to use. 

PIECEWISE QUARTIC FIT, CUBIC SPLINE17, LEAST SQUARES CUBIC SPLINE 

These three routines have many common features:  They are all 

complete FORAST programs.  They are bivariate routines which serve as 

alternatives to interpolation. The approximating function, a piecewise 

low order polynomial, has continuous first derivatives (the spline 

functions also have continuous second derivatives). Two conditions must 

be stipulated for each routine in addition to the table of data points 

(x.,y.), i=l,2,...,N. The data must be arranged so that the independent 

variable, x, is strictly increasing (this may not be strictly necessary 

for the LEAST SQUARES CUBIC SPLINE). 

The PIECEWISE QUARTIC FIT uses a set of quartic equations to 

approximate the table of data.  The derivative dy/dx must be prescribed 

at the first and last point. The approximating function passes through 

the first and last point and through each "break point", the point where 

the approximating function changes from one polynomial to another. The 

derivative at each break point is set equal to the slope of the least 

squares quadratic polynomial involving the break point and two points on 

each side of it. The break points are chosen so that as many data 

points as possible are included in the least squares fit for each 

succeeding polynomial without exceeding a prescribed root-mean-square 

error.  Finally, if the coefficients of the quartic equation are not 

significant enough, the quartic polynomial is replaced by a cubic 

polynomial. This program should produce a very useful fit.  I have had 

no experience with it. 
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The CUBIC SPLINE produces an approximating function which passes 

through each data point, is continuous, and has continuous first and 

second derivatives. Because of this continuity, this approximation 

function may be preferable to polynomial interpolation. However it still 

has the defect, in common with polynomial interpolation, that errors in 

the data may be magnified in the approximating function. The 

approximating function is a different cubic equation between each pair 

of data points.  One obvious disadvantage of this routine is the creation 

of a lot of data. The table of data containing 2N numbers is replaced 

by a table of 5(N-l) numbers: the independent variable in the original 

data, and coefficients for N-l cubic equations. 

The LEAST SQUARES CUBIC SPLINE routine alleviates the two main 

disadvantages of the CUBIC SPLINE routine by replacing the constraint 

that the approximating function must pass through each data point by a 

least square condition. The user must decide how many cubic equations 

he wishes, say K of them, and define the abscissas of the break points, 

say x* ,x*p,...,x* ,.  It may be difficult to choose good break points. 

Common sense dictates that a fair number of data points be between each 

break point, that x* ^ x and x* , ^ x^, and that more break points 

are needed where the slope of the data is changing rapidly. A cubic 

spline approximation, say F(x,A), is made through the points 

(x* ,y* ), k=l,2,...,K+1. The points y* are chosen by the routine so 

that ) ._ (y.-F(x.,A)) is a minimum. 

The choice of good break points might prove to be troublesome, but 

this appears to me to be the most attractive of the three routines 

described in this section.  It should be used more often. 

At the present time, the only source of these routines is the 

Firing Tables Branch of EBL. All three programs are currently being 

updated. Updated programs and descriptions of them may be available by 

the time this report is published. 
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1 £ 
POLYGONAL CURVE 

This is a very specialized type of curve fitting. The bivariate 

table of data (x.,y.), i=l,2,...,N is replaced by a function, F(x,A), 

which is a specified number, say K, of connected straight lines. The 

POLYGONAL CURATE program chooses break points in a very elegant manner 

by combining dynamic programming and least squares to produce a 

polygonal curve which has the "best choice" of break points (i.e., 

VW 2 corners) so that ) ._,(y.-F(x.,A)) is a minimum. Reference 16 describes 

the theory for these programs and gives some examples of results. 

Several FORAST programs have been coded. 

If a program deck or additional information is desired, contact 

Mr. C. M. Frank, Army Materiel Systems Analysis Agency. 

CONSTRAINED NONLINEAR LEAST SQUARES1^ 

This is the only routine in our list which was not developed at 

BRL. This routine is a modification of a FORTRAN Share program 

developed by D. W. Marquardt.  It was obtained from Dr. Marquardt by 

Hue McCoy, Firing Tables Branch, EBL. A few simple changes to make the 

program compatible with the BRLESC FORTRAN were made by the author of 

this report. At this time, the only problem which has been run locally, 

with this program is a simple test problem. This program has been 

included in our list because it has two features not available in our 

other least squares programs:  It permits constraints, and it uses a 

method of solution which should be efficient and converge to the "best" 

answer. 

The constraints are included in the problem by simply adding the 

squares of the unsatisfied constraints to the usual least squares 

measure of goodness of fit.  If there are K constraints, G, (A), the 

program minimizes U(A) =)•_-, f., where f. = y.-F(X.,A) for i=l,2,...,N, 

and fN+k = G, (A) or fN+k = 0 if G (A) is a satisfied inequality constraint. 
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The method of minimizing U(A) is a combination of the "differential 

correction" method, used with the FORAST NONLINEAR LEAST SQUARES program, 

and the well known method of steepest descent.  (See Reference 19«) 

The user of this FORTRAN program must code three subroutines: 

FCODE to evaluate f., PCODE to evaluate öf /da , j=l,2,...,M, and SUBZ 

to compute parameters needed by FCODE and PCODE. 

This program has several attractive features. The two principal 

ones being the ability to include constraints and the higher 

probability of convergence than the FORAST NONLINEAR LEAST SQUARES 

program. The program also supplies statistical results with which to 

analyze the approximation. The user's subprogram computes each f. and 

of./da.. This gives great flexibility to the definition of the 

approximating function; hence, this program can be very versatile. For 

example, it should be possible to use the program to attempt to solve a 

system of nonlinear equations. 

The program has two principal disadvantages:  It requires a 

considerable amount of coding and input, and anyone using the program is 

on their own since no one locally has had experience with it. 

At present, the only source of a program deck or description is 

Hue McCoy of EBL or the author of this report. 

NONLINEAR LEAST SQUARES FOR CORRELATED DATA1 

This program is unique among the available BRLESC least squares 

routines in that it assumes correlation of errors in the data.  (A basic 

assumption for all the other routines is that such correlation does not 

exist.) This program assumes that the approximating function F(X,A) is 
m 

correct as to form, and F(X.,A) = 0 if X. = (x., ,x.0,...,x.„) and 
'      i' i    il' 12'  ' iK 

A = (a ,ap,...,a^) are correct. 

  _            m 
The input for each data point consists of X. = (x,..x.n,...,x.J , 

l    il' i2'  ' iK ' 
the i-th estimate of the variables; m., the standard error of weight 

one; and R , the KxK correlation matrix of cofactors. The routine 
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T 
attempts to find E^ = il±1>li2'''"'^iK^ ' i=l,2,...,N and 

T 
A = (a,,a?,...,aM)  so that F(X. + %.,A) -  0, i=l,2,...,N, and 

'(5) -5li^f"^iJ"\ ' U(5) = ^lVVV ^ is a minimum. 

The user must code a MAIN program which supplies the data and 

controls the iteration of a subroutine COLSA (iteration is necessary 

if F(X,A) is nonlinear) and the calling of a subroutine COLSB when a 

satisfactory fit is found.  The user must also code a subroutine to 

supply F(X. + £,. ,A)  and the first partial derivatives of this F with 

respect to § , k=l,2,...,K, and with respect to a., j=l,2,...,M. 
IK J 

It is hard to draw any conclusions about a program without using 

it, but the following things are obvious:  A considerable amount of 

coding must be done.  The program is restricted to five independent 

variables (x.,,x._,...,x._) and even with this restriction, 51 numbers 

are needed for each data point.  On the other hand, the output of COLSA 

and COLSB are extensive and fairly self explanatory. Finally, this is 

the only BRLESC routine available to perform least squares fits with 

correlated data. 

NLPROG11 

This FORTRAN subroutine (actually a group of subroutines) was 

designed to solve the general nonlinear programming problem:  Minimize 

U(A) subject to J inequality constraints G, (A) ^ 0, k=l,2,...,J and the 

K equality constraints G (A) = 0, k=J+l,J+2,...,J+K. The G (A), 
K K 

k=l,2,...,J+K, and U(A) can be nonlinear functions of A = (a ,ap,...,a„) 

This problem is replaced by the set of subproblems: Minimize P(A,p) = 

U<A) + p YLl1^^  +YL      Gk(A)/p? over A such that Gk(A) * °' 
drl 

k=l,2,...,J, for p = p £ ... £ p until p V _ l/G (A) is small enough. 

There are four versions of this subroutine depending on the method used 
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to minimize P(A,p). The user codes a main program to supply data, 

initial guesses at A, and a number of other parameters.  He will also 

have to code a subroutine to evaluate U(A) and the constraint equations, 

Depending on which NLPROG version is used, the user may have to supply 

first and second derivatives of U and each of the G, , just first 

derivatives, or no derivatives at all. 

This subroutine is nonstandard, it may be difficult to understand, 

it requires a fair amount of programming and it will be difficult to 

check the validity of the solution.  On the other hand, it can be 

applied to a wide variety of problems. This subroutine may converge 

slightly better than the standard minimizing subroutines, FNMIN and 

FDMIN, but these two subroutines are much easier to use. 

At present, the only source of program decks is the author. A 

complete description of this routine is included in Reference 11.  Part 

of that description is duplicated in the Appendix of this report. 
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APPENDIX:  INSTRUCTIONS FOR USING APPROXIMATION ROUTINES 

INTRODUCTION 

These descriptions are copied from various published and unpublished 

sources.  I wish to thank L. W. Campbell, CSD, for permission to use 

material from his publications and other publications from Systems 

Programming.  I also thank Dr. A. Celmins, AMD, for the description 

of his NONLINEAR LEAST SQUARES ROUTINE FOR CORRELATED DATA, and 

Joe Hurff, EBL, for the description of LEAST SQUARES CUBIC SPLINE. 

Standard FORTRAN Subroutines 

These descriptions are taken from an unpublished Systems Programming 

listing July 25, I968. Reference 11 of this report has a more detailed 

description of GENLSQ and POLYLS. 

LISTING OF FORTRAN SUBPROGRAM CARD DECKS AVAILABLE FROM 
SYSTEMS PROGRAMMING,BLDG,328, RM 213, APG,MD. 

KEY TO STAT. NO. FIELD, 
(I) INDICATES INPUT ARG., CALLING PROG. SUPPLIES VALUE 
(R) INDICATES RESULT. SUBPROGRAM STORES VALUE THERE. 
(T) INDICATES TEMPORARY STORAGE. 
(LR) INDICATES ARGUMENT USED AS INPUT AND RESULT. 
(F) INDICATES ARG. USED AS A FUNCTION NAME. 
(S) INDICATES ARG. USED AS A SUBROUTINE NAME. 
(U) INDICATES ARG. WITH UNUSUAL USAGE. 

IMPLIED TYPE OF DUMMY ARGUMENT INDICATES REQUIRED TYPE OF ACTUAL ARGUMENT, 
EXCEPT WHERE NOTED OTHERWISE. 

IMPORTANT BRLESC1 RESTRICTIONS-NO. OF DIMENSIONS MUST BE THE SAME 
BETWEEN ACTUAL AND DUMMY ARGUMENTS. 

DUMMY ARRAY ARG. CANNOT HAVE ACTUAL ARG. 
THAT HAS SUBSCRIPT. (ACTUAL ARG. MUST 
BE JUST ARRAY NAME WHEN DUM. ARG. IS 
ARRAY.) 

SUBROUTINE DVDINT(X,FX,XT,FT,NP,ND) 
C DOES DIVIDED DIFFERENCE INTERPOLATION. 
C (I) X IS ARGUMENT FOR WHICH FUNCTIONAL VALUE IS DESIRED. 
C (R) FX IS NAME OF THE RESULT. 
C (I) XT IS ARRAY OF X VALUES.(l DIMENSIONAL) 
C (i) FT IS ARRAY OF FUNCTIONAL VALUES.(l DIMENSIONAL) 
C (l) NP IS THE NUMBER OF VALUES IN XT AND FT ARRAYS. 
C (I) ND IS THE NUMBER OF POINTS TO USE FOR EACH INTERPOLATION. 
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SUBROUTINE MATINV(A,N,C,NMAX,K,DET) 
C MATRIX INVERSION. A=A**(-l) 
C(IR)  A IS THE MATRIX AND IS REPLACED BY ITS INVERSE. 
C (I)  N IS THE DIMENSION OF THE MATRIX. 
C (R)  C IS USED ONLY WHEN K=l AS DESCRIBED BELOW. 
C (I)  NMAX IS THE MAX. NO. OF ROWS OF A AS DECLARED. 
C (I)  K DESCRIBES OPTIONS. K=0 MEANS AN N X N MATRIX.K=l MEANS 
C       AN N X N MATRIX AND A SINGLE VECTOR AT C.(THE SOLUTION 
C       VECTOR REPLACES THE C VECTOR). K>=2 MEANS AN N X (N+K-l) 
C       MATRIX. (THE (K-l) VECTORS ARE REPLACED BY THE (K-l) 
C       SOLUTION VECTORS). 
C (R)  DET IS THE VALUE OF THE MATRIX DETERMINANT. 
C       WHEN A IS SINGULAR, AN ERROR PRINT AND RETURN WITH THE 
C       VALUE OF DET SET TO ZERO IS EXECUTED. 

SUBROUTINE FNEQS(A,N,C,NMAX,W) 
C      FORM NORMAL EQUATIONS  (FULL N X (N+l) MATRIX). 
C (R)  A IS THE MATRIX OF NORMAL EQUATIONS BEING FORMED. 
C A MUST BE CLEARED TO ZEROS BEFORE FIRST CALL OF FNEQS. 
C (I)  N IS THE NO. OF TERMS(EXCLUDING FUNCTIONAL VALUE). 
C (I)  C IS A VECTOR CONTAINING THE TERMS OF THE EQUATION INCLUDING 
C THE FUNCTIONAL VALUE AS THE LAST TERM. 
C (I)  NMAX IS THE MAX. NO. OF ROWS OF A AS DECLARED. 
C (I)  W IS THE WEIGHT TO BE APPLIED TO THIS EQUATION. 

SUBROUTINE GENLSQ(X,NRX,F,M,A,NRA,N,C,R,AF,ERMS,SIG,T,DET,IC) 
C USES FNEQS AND MATINV SUBROUTINES.(MUST INCLUDE CARDS.) 
C (I)  X   IS A MATRIX OF TERMS OF EQUATIONS. 
C (i)  NRX IS NUMBER OF ROWS IN X. 
C (I)  F   IS A VECTOR OF FUNCTION VALUES FOR EQUATIONS. 
C (I)  M   IS NUMBER OF EQUATIONS. 
C (T)  A   IS A MATRIX OF AT LEAST (N)X(N+l),IS REPLACED BY INVERSE. 
C (I)  NRA IS NUMBER OF ROWS IN A. 
C (i)  N   IS NUMBER OF TERMS NOT INCLUDING FUNCTION VALUE, N.LE.99. 
C (R)  C   IS A VECTOR FOR N COEFFICIENTS. 
C (R)  R   IS A VECTOR FOR M RESIDUALS. 
C (R)  AF  IS A VECTOR FOR M APPROXIMATE FUNCTIONS. 
C (R)  ERMS IS THE ROOT MEAN SQUARE ERROR,EQUALS ZERO IF M.LE.N. 
C (R)  SIG IS A VECTOR FOR N SIGMAS. 
C SIG IS INVERSE ELEMENT IF INV. ELEMENT IS NEGATIVE. 
C (R)  T   IS A VECTOR FOR N T VALUES. 
C (R)  DET IS THE VALUE OF THE DETERMINANT. 
C (I)  IC  IS THE CONTROL -- 
C       IC IS 0  COMPUTE EVERYTHING. 
C        IC IS 1  COMPUTE ONLY COEFFICIENTS. 
C       IC IS 2  COMPUTE EVERYTHING EXCEPT RESIDUALS AND APPROXIMATIONS. 
C        IC IS 3  COMPUTE EVERYTHING EXCEPT APPROXIMATIONS. 
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SUBROUTINE POLYLS(X,F,M,A,NRA,N,C,R,AF,ERMS,SIG,T,DET,IC) 
C USES FNEQS AND MATINV SUBROUTINES. (MUST INCLUDE CARDS.) 
C (I) X    IS A VECTOR OF INDEPENDENT VARIABLE. 
C (i) F    IS A VECTOR OF FUNCTION VALUES FOR POLYNOMIALS. 
C (I) M    IS NUMBER OF POLYNOMIALS 
C (T) A    IS THE MATRIX OF AT LEAST (N+l)X(N+2),IS REPLACED BY INVERSE 
C (I) NRA  IS NUMBER OF ROWS IN A 
C (I) N    IS DEGREE OF POLYNOMIAL, N.LE. 99 
C (R) C    IS VECTOR FOR (N+l)COEFFICIENTS 
C (R) R    IS VECTOR FOR M RESIDUALS 
C (R) AF   IS VECTOR FOR M APPROXIMATE FUNCTIONS 
C (R) ERMS IS THE ROOT MEAN SQUARE ERROR,ZERO IF M.LE.N+1 
C (R) SIG  IS A VECTOR FOR N+l SIGMAS. 
C SIG IS INVERSE ELEMENT IF INV. ELEMENT IS NEGATIVE. 
C (R) T    IS A VECTOR FOR N+l T VALUES. 
C (R) DET  IS THE VALUE OF THE DETERMINANT. 
C (i) IC   IS THE CONTROL— 
C      IC IS 0  COMPUTE EVERYTHING. 
C      IC IS 1  COMPUTE ONLY COEFFICIENTS. 
C      IC IS 2  COMPUTE EVERYTHING EXCEPT RESIDUALS AND APPROXIMATIONS. 
C      IC IS 3  COMPUTE EVERYTHING EXCEPT APPROXIMATIONS. 

SUBROUTINE FNMIN(N,X,FX,FUN,E,EPS,K) 
C FINDS MINIMUM OF A FUNCTION OF MORE THAN ONE VARIABLE. 
C (I) N    IS THE NUMBER OF VARIABLES. N<11 UNLESS CHANGE DIMENSION STATS. 
C(IR) X    IS A LINEAR ARRAY CONTAINING THE INITIAL ESTIMATES OF THE N 
C VARIABLES AND AT RETURN CONTAIN THE VALUES AT THE MINIMUM. 
C (R) FX   IS WHERE THE FUNCTIONAL VALUE AT THE MINIMUM WILL BE STORED. 
C (F) FUN  IS THE NAME OF A FUNCTION OF 2 ARGUMENTS—FUN(X,N)—THAT 
C COMPUTES THE VALUE OF THE FUNCTION AT X. (AN EXTERNAL 
C STATEMENT IN THE CALLING PROGRAM IS NECESSARY). 
C (I) E    IS THE NAME OF A SCALAR WHICH IS USED TO DEFINE THE INITIAL 
C TRIAL STEP AND THE INITIAL BOUND FOR THE CHANGE IN EACH 
C VARIABLE. E>1. (DELX(l)) INITIAL=E*EPS(l) AND 
C (DELX(I))MAX.  INITIAL=20*(E*EPS(I)). 
C (I) EPS  IS A LINEAR ARRAY OF N EPSILONS DEFINING THE ACCURACY 
C DESIRED IN EACH OF THE VARIABLES. 
C(IR) K    IF K=0 INITIALLY, AN ERROR PRINT AND HALT WILL BE 
C EXECUTED WHENEVER CONVERGENCE WITHIN EPS HAS NOT BEEN 
C ACHIEVED AFTER 20*N ITERATIONS.IF K IS NOT ZERO INITIALLY, 
C RETURN IS EXECUTED UPON CONVERGENCE WITH K SET TO 1, 
C OR AFTER 20*N ITERATIONS WITH K SET TO 2. 
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SUBROUTINE FDMIN(N,X,DX,F,SUB,D,EPS,EPSI,K) 
C FINDS MINIMUM OF A FUNCTION, USES DERIVATIVES. 
C MUST BE FUNCTION OF MORE THAN ONE VARIABLE, I.E. N.GT.l. 
C (i) N IS THE NUMBER OF INDEPENDENT VARIABLES IN THE FUNCTION TO 
C BE MINIMIZED.N<L1 UNLESS DIMENSION STATEMENTS ARE MODIFIED. 
C(IR) X IS THE LINEAR ARRAY OF VARIABLES.INITIALLY CONTAIN THE 
C ESTIMATES OF THE VALUES AT THE MINIMUM.AT RETURN 
C CONTAIN THE FINAL VALUES. 
C (T) DX IS A LINEAR ARRAY CONTAINING THE VALUES OF THE N PARTIAL 
C DERIVATIVES OF THE FUNCTION EVALUATED AT X BY THE SUB 
C FROGRAM.NO INITIAL VALUES REQUIRED. 
C (R) F CONTAINS THE VALUE OF THE FUNCTION AT RETURN. 
C (S) SUB IS THE NAME OF A SUBR0UTINE--SUB(N,X,F,DX)--THAT COMPUTES 
C THE FUNCTIONAL VALUE (F) AND DERIVATIVES (DX). 
C (I) D IS AN ESTIMATE OF THE IMPROVEMENT IN THE VALUE OF THE FUNCTION. 
C WHEN D=Q, ROUTINE ASSUMES THE MIN. VALUE IS NEAR 0. 
C (I) EPS IS THE ACCURACY DESIRED IN THE FUNCTION VALUE. 
C (I) EPSI IS A CONDITION ON THE INDEPENDENT VARIABLES. 
C ABS(DELTAX(l))/ABS(X(l))<EPSI.IGNORED IF EPSI VALUE=0. 
C(IR) K IF K IS INITIALLY ZERO, AN ERROR PRINT AND STOP WILL BE 
C EXECUTED WHEN FUNCTION IS NOT CONVERGING.IF K IS NOT ZERO 
C INITIALLY,RETURN IS EXECUTED WITH K SET TO 1 WHEN 
C CONVERGENCE IS SATISFIED OR K SET TO 2 WHEN THERE IS NOT 
C CONVERGENCE. 

Standard FORAST Subroutines 

Most of these descriptions are taken from BRL Report No. 1275, 

The FORAST Programming Language for ORDVAC and BRLESC (Revised), by 

L. W. Campbell and G. A. Beck, March I965.  The descriptions of FN.MIN 

and FD.MIN are unpublished documents available from Systems Programming. 

D.D.IN)X)FX)Xo)Fo)tpt)n)ix)      X  is the address of the argument. 

is the address of the result, 

is the initial address of the 

table of Xi's. 

is the initial address of the 

table of Fi's. 

tpt is the number of entries in 

the table,  (no. of Xi's) 

is the number of points to use 

in the interpolation, 

is the distance between entries 
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if)# FX 

(Divided Difference Inter- Xo 

polation) 

Must use all three Fo 

optional arguments or 

none.  If omitted, tp 

(5)1)1) is used. 

D.D.SX)Fo)FX)$ n 

Use this to interpolate 

more functions using the ix 



same value of X.  (must 

use ENTER). 

in the X table 

if is the distance between entries 

in the F table. 

The following matrix manipulation routines are available: 

S.N.E    )Al,l)n)Co)DET$ 

MAT.INV.  )Al,l)n)Co)DET$ 

To omit the use of 

Co and use DET it is 

necessary to write 

Al,l)n))DET) 

SY.SNE   )Al,l)n)Co)DET$ 

SY.INV   )Al,l)n)Co)DET$ 

F.N.E.   )Al,l)n)Cl)w£ 

F.O.MAT  )Al,l)n)# 

MAT.M    )Al,l)Bl,l)Cl,l)i) 

J)k)* 

Al,l: Bl,l: Cl,l are addresses 

of the first elements of matrices. 

n  is the number of unknowns (rows). 

Co is the address of the first 

element of the solution. 

DET is the address of the determinant. 

Cl is the address of the first 

CAP coefficient of the given equation. 

W  is the address at weights for the 

equation, 

i  is the number of rows in A(or AT). 

j  is the number of cols, in 

A(or AT) and is equal to the 

no. of rows in B(or B^). 

k  is the number of columns in 

B(or BT). 

Additional comments on the above matrix subroutines: The S.N.E. 

(Solve normal equations) assumes all elements of a matrix having n rows 

and n + 1 columns are stored in the memory by rows. The SY.SNE 

(symmetric solve normal equations) assumes that only the upper triangle 

of an n x n + 1 matrix is stored and SY.INV (symmetric inversion) 

assumes that only the upper triangle of an n x n matrix is stored. 

S.N.E.; MAT.INV; SY.SNE; and SY.INV all replace the original matrix 

with its inverse. The SY.SNE stores the solution vector only at Co. 

The F.N.E. (form normal equations) assumes that the upper triangular 

augmented matrix has been cleared by the program before it is entered 

with the first equation. The F.N.E. produces a matrix that can be 

solved with the SY.SNE. The F.O. MAT (fill out matrix) will take an 
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augmented upper triangular matrix (as generated by F.N.E.) and replace 

it with an augmented square matrix (as needed by S.N.E.). 

The S.N.E. will attempt to rearrange rows of the matrix when it 

finds a zero diagonal element while it is computing the inverse. The 

row rearrangement does not affect the arrangement of the solution vector, 

however the inverse matrix will not be correct if any rows were actually 

rearranged. Rearrangement can be avoided by use of the "not" option 

as explained below. 

Additional BRLESC S.N.E. options: 

S.N.E. )Al,l)n)Co)DET)drow)dcol)Bl)db)dc)ZERO)not)$ 

If "drow" is specified, it is the spacing between rows; i.e. the 

address A2,l - address Al,l. 

If "dcol" is specified, it is the spacing between columns (which 

is the same as spacing between elements within a row). 

If Bl is specified, the n positions beginning at Bl are used as 

the column vector instead of the (n+l) column of the matrix. 

If "db" is specified, it is the spacing between the elements of 

the column vector. 

If "dc" is specified, it is the spacing between elements of the 

solution vector. 

If ZERO is specified, it is the address of the number which will be 

used to check for zero diagonal elements. Those diagonal elements whose 

absolute value are less than ZERO will be considered as zero for the 

rearrangement test. 

If "not" is any address different from zero, the S.N.E. will not 

rearrange any rows. 

When any or all of these spacing options are omitted (or zero), 

the normal consecutive spacing of elements is assumed. 
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For M/VT.INV "drow", "dcol", ZERO, and "not" may be specified 

when needed and have the same meaning as for the S.N.E. except "not" 

has the opposite meaning. MAT.INV does not normally rearrange any 

rosw and will do so only when "not" is specified as non-zero. 

Note that when optional addresses are omitted any place except at 

the end of an ENTER statement, the right parenthesis must still be 

written for each omitted address.  In particular, the above options for 

the MAT.INV subroutine must correspond to the same position on the list 

of addresses as used by the S.N.E. since they are just different 

entrance points to the same subroutine. 

G.L.SQ 

or 

P.L.SQ)X)ix)F)if)m)Al,l)n)C)R)ir)AF)iaf)ERMS)SIG)T)DET)w)iw)EqSEQ)TSEQ % 

(General or polynomial least squares data fitting.) 

X    For G.L.SQ, X is the location of the first term of the first 

equation. Terms must be stored consecutively. 

For P.L.SQ, X is the first independent variable, 

ix   For G.L.SQ, ix is the distance from one equation to the next 

one. For P.L.SQ, ix is the distance from one independent 

variable X to the next one. 

F    is the function value for the first equation or polynomial, 

if   is the distance between function values, 

m    is the actual total number of equations or "points" that are 

to be used in computing the fit.  (it must not include those 

skipped by using EQSEQ.) 

Al,l is a block of storage that must be large enough for an 

augmented (n x n) symmetric matrix, 

n    For G.L.SQ, n is the actual number of terms to be used in 

each equation,  (it must not include those skipped by using 

TSEQ.) For P.L.SQ, n is one less than the number of terms 

and is the degree of the polynomial when all the terms are 

used. 

C    is the initial address for consecutively storing the n 

coefficients,  (if n 2: 38, n + 1 spaces must be allowed at C.) 
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R    is the initial address for storing the m residuals, 

ir   is the distance desired between residuals, i.e. the 

increment for the R address. 

AF   is the initial address for storing the m approximate function 

value s. 

iaf  is the increment for the AF address. 

ERMS is the store address for the root-mean-square error.  Zero is 

stored when m ^ n or when ) W. ^ n. 

SIG  is the initial address for consecutively storing the n "sigmas". 

SIG. = ERMS * SQRT(inv.el.A. .) 
l x       1,1 

(if the inverse element A. . is negative, it is stored for 

SIG. and T. =0.) 
l     l 

T    is the initial address for consecutively storing the n "t's". 

T. = C./SIG. 
l   i'   l 

DET  is the address to store the determinant. 

W    is the initial address of the weights to be used. 

iw   is the increment for the W address. 

EQSEQ is the initial address of a consecutive sequence of numbers 

that have a one to one correspondence with each equation 

(or point) stored at X. A zero number indicates that the 

corresponding equation (or point) is to be used and a non-zero 

number indicates that it should not be used. Note that 

this sequence, if used, must contain m zero numbers. 

TSEQ, is the initial address of a consecutive sequence of numbers 

that have a one to one correspondence with the terms in each 

general equation or with the powers of X in a polynomial. A 

zero number indicates that the corresponding term or power 

of X should be used and a non-zero number indicates that it 

should not be used. Note that this sequence, if used, 

must contain n zero numbers. 
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A FUNCTION MINIMIZING SUBROUTINE WITHOUT CALCULATING DERIVATIVES 

Donald Taylor and John Wortman Jan 1966 

The subroutine will find the minimum of a function f(X,....X ). It 
1    n 

requires that the programmer provide for the evaluations of the function. 
(At present, available on BRLESC only)• 

The entrance sequence is as follows: 

ENTER(FN.MIN)n)X )F)EVF)E)H )EPS )ERR) 

n   is the number of independent variables in the function to 
be minimized. 

X,   is the address of the first of n consecutive positions for 
the independent variables.  Initially, these positions 
should contain estimates of the values at the minimum; 
upon exit from the subroutine, they contain the final 
values of the independent variables. 

F   is the address of the value of the function. 

EVF is the address of the Programmer's function evaluation. 
It must use X ....X as the values of the independent 

variables and store the resulting function value at F. 
Use the name (FN.RET) to return to the subroutine. 

E   is the address of a number which is used to define the 
initial trial step and the initial bound for the change 
in each independent variable. Normally, E > 1. 

(AX )initial = E x EFS± (AX^max.initial = 20(E x EPS^ 

H,  is the address of the first of n + kn  consecutive 1 
positions used for temporary storage.  (Direction 
matrix, etc.) 

EPS, is the address of the first of n consecutive positions 
which should contain the accuracy desired in each of the 
independent variables. 

ERR OPTIONAL. The subroutine will send control to this 
address (instead of producing an ERROR print) if, after 
20n iterations, the requested accuracy has not been 
satisfied. 
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It is possible to maximize a function f by minimizing the function 
-f.  In least squares fitting, the subroutine has been used 
successfully to fit some non-linear functions for which 'differential 
corrections' did not work well.  In this case, the function to minimize 
is the sum of the squares of the residuals. 

The subroutine is derived from a method described by M.J.D.Powell. 
It is a variation of the well known method of minimizing a function of 
several variables by changing one parameter at a time. 

The method does not recognize constraints on the variables. 
Sometimes, it may be possible to apply some constraints within the 
function evaluation program by assigning some relatively large value to 
the function whenever the constraint has been violated.  There is, 
however, no assurance that this will succeed. 

The error print when the number of iterations exceeds 20 n (unless 
bypassed by the option) is ITER.>20xN and the number printed is the 
minimum value of the function at this point. 

It is suggested that several sets of initial values of the 
independent variables should be tried to see that they converge to the 
same minimum to give some assurance to the result. The subroutine does 
not do this. 

A FUNCTION MINIMIZING SUBROUTINE   (WITH DERIVATIVES) 

J.C. Torrey and John Wortman       November 1965 

This subroutine will find the minimum of a function f(x,...x ). v 1   n' 
The routine is called FD.MIN to emphasize that the programmer must 
provide evaluations for the partial derivatives of his function as well 
as for the function value. At present it is available only on BRLESC. 

The entrance sequence is as follows: 

ENTER(FD.MIN)n)Xl)EVE)D)EPS)Hl)F)EPSl)^, where 

n   is the number of independent variables in the function 
to be minimized. 

M.J.D.Powell; An Efficient Method for Finding the Minimum of a Function 
of Several Variables Without Calculating Derivatives.  The Computer 
Journal, Vol. 7,  No. 2, July, I96U. 
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XI  is the address of the first of n consecutive positions 
for the independent variables.  Initially, these positions 
should contain the programmer's estimates of the values 
at the minimum; when the routine is finished, they hold 
the final values of the independent variables. 

EVF is the address of the programmer's function and derivative 
evaluation. Return from EVF to the routine is done by 
GOTO(FD.RET)#. 

D   is the address of an estimate of the improvement in the 
value of the function. This estimate will not be 
critical except in cases where the routine is to 
distinguish between local minima.  (Option: When D = 0, 
the routine assumes that the function's minimum value is 
near zero and £ zero.) 

EPS is the address of the accuracy desired in the function 
value. 

p 
HI  is the address of the first of n + 9*1 consecutive 

positions, used for temporary storage. 

F   is the address of the first of n+1 positions for the 
value of the function and its n partial derivatives. 
(Note that the function is stored at F, with derivatives 
following in the same order as the corresponding 
variables at XI.) 

EPS1 (optional) is the address of a cauchy-like condition on 
the independent variables. At the last routine iteration, 

< EPS1,   1=1...n 

The programmer will use the EPS1 option when his interest is in the 
values of his variables at the minimum, rather than the function itself. 

Note that FD.MIN can be used to maximize a function. To maximize 
f, minimize -f. 

The routine has been used successfully in least squares fitting 
that would normally be done by differential corrections. To do this, 
the function to minimize is the sum of the squares of the residuals. 
The value of D at entrance should be zero. 
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FD.MIN, derived from a routine described by Davidon ; uses a 
variable n x n matrix M as a metric in searching for the best values of 
the X.. The programmer desiring to impose constraints on his variables, 

or to use information about them to speed the search, should modify M 
the first (but only the first) time the routine enters his function 

2 
evaluation.  M is stored in the first n positions of the block HI, and 
is set to the unit matrix at the start by the subroutine. 

Setting the diagonal elements of M to the squares of the estimated 
error in the initial values of the variables may effect a substantial 
increase in the speed of minimization.  Thus, if X- = Ik  ± h,  then 

nu  = 16; but if X = ll+ ± .1, then nL  = .01. 

If the programmer desires to impose linear constraints on his 
variables, he modifies the matrix at the first function evaluation. 
For the constraints 

I  aiXi = kl ' 

y b.x. 
L>    1 1 

kp , etc., 

he must choose M so that 

Za.m. . = 0 

) b.m. . = 0 , etc., 
L.    1 IJ    '    ' 

and initial values of the X. to satisfy the constraints. 
1        J 

The subroutine has an error exit which prints 'FDMIN DOWN' for its 
error number. A faulty derivative evaluation is the most likely cause 
of error, but the programmer should assure himself that his function has 
a minimum. 

Finding a minimum of a general function is an uncertain process. 
Davidon suggests converging to the minimum several times from varying 
initial values before accepting it. FD.MIN does not do this, but its 
users may add assurance to their results by following his lead. 

William C. Davidon, "Variable Metric Method for Minimization", 
ANL-5990, Physics and Mathematics (TID-I15OO, l4th ed.) AEC R&D Report. 
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FQRAST Programs 

The LEAST SQUARES PROGRAM has been extended considerably since its 

original description and amendment (Reference 12) were written in 1965. 

This program is still available, but the Computer Support Division 

recommends using the MULTIPLE REGRESSION program instead. 

The description of the MULTIPLE REGRESSION program (Reference 15) 

is much to bulky to include here.  The description of the NONLINEAR 

LEAST SQUARES PROGRAM is included.  This description refers to Reference 

15. 

FORTRAN programs and descriptions for both MULTIPLE REGRESSION and 

NONLINEAR LEAST SQUARES will be available by the time this report is 

published. 

The LEAST SQUARES CUBIC SPLINE is the only other description 

available at this time for programs in this section. 

The PIECEWISE QUARTIC FIT, and the CUBIC SPLINE have been used by 

various members of the Firing Tables Branch of EBL. They may now have 

programs and instructions for them as they have for the LEAST SQUARES 

CUBIC SPLINE. 

NONLINEAR LEAST SQUARES PROGRAM 

L. Campbell December 1966 

The multiple regression computer program (as described in BRL 
Report No. 1550) has been used as a basis for developing a new general 
purpose non-linear least squares program for BRLESC. Except for the 
exceptions noted here, the rules for using this program are the same as 
for the regression program. 

For the non-linear least squares, the expression that is to be 
used to fit the observed data must be included as a redefinition 
formula except it must be called F. The right side of this formula 
must be inclosed in parentheses if it has + signs between "terms". 
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For example: 

F = (A + EXP(A1*V1)) , 

where A,A1,...,A2U must be used to refer to the coefficients that are to 
be determined from initial approximations to these coefficients. (A and 
Ao both refer to the first coefficient.) 

5F  3F 
The partial derivatives ^r- , ^ry , must also be defined by- 

redefinition formulas and they may be called P,P1,P2,... (or R's may be 
used if R's are also used in the main formula).  For example, the partial 
derivatives of the above F expression would be written as: 

P = 1, PI = VI * EXP(Al*Vl) , 

The main formula must define a residual as the sum of all the 
partial derivatives, so on the left of the = symbol should be "some 
V(or R) - F" and on the right, each i-th term is the name used for the 
partial derivative with respect to the i-th coefficient. The main 
formula for the above example and using Vh  as the observed value of the 
function would be 

ylt- - F = P + Pl# 

Following the main formula must be one or more lines of initial 
estimates for the coefficients punched in 10 column fields with eight 
per line. They should be punched with decimal points and may have 
exponents. 

Following the coefficient estimates must be epsilons for testing 
convergence of the coefficients. Each coefficient must have its own 
epsilon and they are to be punched in 10 column fields with eight 
per line and may have decimal points and exponents. 

The data, with optional header lines, follows and it must be 
followed with 2 blank lines. Data may be on tape or cards or previous 
data may be used by using just 2 blank lines, just like the regression 
program. The initial value of AH is 1 in this program too, so a single 
header card is expected to precede the data. The amount of data 
allowed on tape is unlimited, the amount of data allowed on cards is 
limited to the BRLESC memory capacity - 9000 approximately. 

The program limits the number of iterations to 20 unless an 
"MI = i" control card is used where i is a new maximum number of 
iterations. When convergence is not reached within this maximum 
number of iterations, the program prints "DIDN'T CONVERGE IN i 
ITERATIONS." and will not print any residuals, sigmas or t's. 
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An "USE DELTA* p" control card may be used to cause each change in 
the coefficients to be less (or more) than what the program computes. 
Using p < 1 may allow convergence when p = 1 (its normal value) will 
cause divergence.  (p > 1 should not be used.) Each computed change in 
each coefficient is multiplied by p before it is used to actually change 
the coefficient for the next iteration. 

There is no rescaling in this non-linear program. All residuals 
and approximate functions printed will be in their redefined scale. 

The output includes for each iteration, the current root-mean- 
square error, the maximum residual, the coefficients before being 
changed, the "delta" or amount of change for each coefficient and the 
new coefficients. 

After convergence, the program normally prints all the approximate 
values of the function and residuals, the same as the regression program 
except there is no rescaling.  The final root-mean-square error and 
maximum residual is printed and the "sigmas" and "t's". 

The following control cards may be used and have the same meaning 
as in the regression program. 

FR.RES.>= CARD INPUT 
NO RESIDUALS TAPE INPUT 
RESIDUALS TAPE MF TO 
STOP ERMS= TAPE MFMF 
ANGLES ARE IN MILS SAME FORMULAS 
ANGLES ARE IN DEGREES 
ANGLES ARE IN RADIANS 
VW= 
VN= 
V.= 
IDE 
AH= 

New Control Cards: 

MI= i where i is maximum no. of iterations 
allowed,  (i = 20 initially.) 

USE DELTA* p     where p is multiplied times actual computed 
coefficient "deltas" before actually computing 
new coefficients. 
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Input Sequence: 

Control Cards 
Re-definition formulas (must include F = formula)   „,,„ ___,_TTnr, 

/ _ or SAME FORMULAS 
Main formula (Observed Function - F = Partial 

derivatives.) 

Initial Coefficient Estimates (10 column fields) 

Epsilons for convergence for each coeff. (10 column fields.) 

Heater cards, if AH ^ 0     Omit to re-use same data. 
Data Data may be on tape or cards 
2 blanks 

(May repeat above sequence any number of times.) 

Output Sequence: 

Header lines, if any. 
First 12 data numbers. 
Two lines of program parameters. 
All formulas. 
blank line 

Current ERMS and Max. Residual 
Initial Coefficients 
Computed changes of coefficients        repeated for each 
If p / 1, actual changes of coefficients   iteration. 
New coefficients 
blank line 

Approximate function and Residuals 

or 

Data line no., original function, and residual. 

Final ERMS and final Max. Residual 

Sigmas 

t's (If t = 0, then corresponding sigma is negative diag. matrix 
element.) 

(Next output sequence will start on a new page.) 
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PROGRAM 

PROGRAMMER 

DATE 

LANGUAGE 

DESCRIPTION 

CUBIC  SPLINE LEAST  SQUARE 

JOE HURFF 

MAY 1969 

FORAST 

FOR GIVEN DATA SETS,  THIS PROGRAM YIELDS AN APPROXIMATING 
FUNCTION  IN THE FORM OF A SERIES OF CUBIC POLYNOMIALS. 
THE FUNCTIONS ARE DERIVED BY USING BOTH THE PRINCIPLE OF 
LINEAR LEAST  SQUARES AND CUBIC SPLINE FITTING.     THIS 
PROCESS MAY USUALLY BE USED SUCCESSFULLY FOR  SMOOTHING 
AND PROVIDING FIRST AND SECOND DERIVATIVES. 

PROCEDURE 

I DATA  CARDS   (12 DIGIT FLOATING  POINT)   THERE MAY BE A 
MAXIMUM OF 500 DATA POINTS 

1. CARD SET-UP 

COLS 
1-12    X 

15-21*    F  (Xz) 

25-80    BLANK 

2. BREAK POINTS  (12 DIGIT FLOATING POINT)  ONE OR TWO 
CARDS 

COLS CARD 1 CARD 2 

1-12 *o *6 
13 -2k 

*1 h 
25-36 

\ 
X8 

37 -k8 s s 
1*9-60 h X10 

61-72 xc s * 

If there are fewer than 10 break points,  the S must follow in field 
immediately after the  last  one. 
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TIME 

OUTPUT 

II HEADER CARDS  (NONE) 

III CONTROL CARD   (12 DIGIT FLOATING POINT) 

COLS 
1-12    F«(XQ) 

15-2U    F'CXJJ) 

73-75    3 DIGIT CODE  - USER'S OPTION 

(0 - FIT F'   (X  )  EXACTLY 

76 <1  - CONSTANT F''(X)   OVER FIRST  INTERVAL 
[2  - FIT F(XQ) EXACTLY 

[O  - FIT F' (Xjj)  EXACTLY 

77 ^1  - CONSTANT F''(X)   OVER THE LAST  INTERVAL 
[2 - FIT F(XN) EXACTLY 

78-80    3 DIGIT CODE  - USER'S OPTION 

IV ORDER OF INPUT 

1. CONTROL CARD 

2. BREAK POINT CARDS 

3. DATA CARDS 

k.     BLANK 

5.  PROB CARD 

APPROXIMATELY ONE HALF MINUTE PER CASE 

THE OUTPUT IS COMPLETELY LABELED 

Other FORTRAN Routines 

No description of the Share program we called CONSTRAINED NONLINEAR 

LEAST SQUARES is given. Dr. Celmins kindly prepared a description of 

the NONLINEAR LEAST SQUARES FOR CORRELATED DATA routine. The 

description of NLPRCG was taken from BRL Memorandum report No. I958. 
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NON-LINEAR LEAST SQUARES SUBROUTINES FOR 
CORRELATED IJATA (COLSA, COLSB) 

A. Celmins December 1968 

Reference:  (l8) BRL Report 1360 (March 1967), Appendix 

Problem Outline 

A general least squares problem can be formulated as follows:  We 
have observed r sets of n quantities x,,...,x . Between these 

quantities a functional relationship which depends on m unknown 
parameters y ,...,y is assumed: 

F(x1, ; yn,--.,ym) = 0 (1) 

If r > m, we compute the parameters and some corrections of the 
observations such that Equation (l) is satisfied at all r observation 
sets and the sum of correction squares is a minimum.  For this 
computation the correction squares should be weighted differently 
depending on their accuracies and on correlations between them. 

The subroutine COLSA computes the values of the parameters y., 
J 

their accuracies, and their cofactor matrix (i.e. variance-co-variance 
matrix) from the following data:  Observations, standard errors of the 
observations, a cofactor matrix for each observation set, and approximate 
values of the parameters. Correlations between observations belonging 
to different sets are not considered. 

The subroutine COLSB may be called after the final values of the 
parameters are established.  It computes the corrections (probable 
errors) of the observations, prints and plots error distributions, 
prints identifications of sets with large corrections and carries out 
some numerical controls of the computations. 

Sample Problem 

The relationship between x and x? may be linear: 

F(xx, x2 ; yi>yg) = xi cos yi + x2 sin yi " y2 = ° 
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The observed points (x ,xp) may have different accuracies and 

there may be some correlation between the coordinates observed so that 
the error ellipses of the points observed have different sizes and 
directions.  (Such correlations can be caused by the observation 
technique, for instance.)  COLSA will assign different weights to the 
points in accordance with their error ellipses. The resulting parameters 
y and y will be furnished together with their standard errors and 

cofactor matrix.  (y, and yp are correlated because both are computed 

using the same data.) 

Data for COLSA and COLSB 

All data are assumed to be in the core memory. The dimensions of 
the corresponding arrays are as follows: 

Observations: X(5,1000) - n ^ 5; r < 1000 

Standard errors of unit weight:  ERZX(lOOO) - r s 1000 

Cofactor matrices:  RC0R(5,5,1000) - n ^ 5; r £ 1000 

Approximations of parameters: YCAP(lO) - m ^ 10 

Alphanumeric identifications of observed sets, consisting of 
two 10-letter words for each set:  IDEN (lOOO) 

TIFIC (1000) - r < 1000 
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In addition to the data, a subroutine, say FU, to evaluate the 
function F(x,,... ,x ; y,,...,y ) is needed. The routine must furnish 

1'  ' n   1    m 
the value of F as well as the n + m values of the first partial 
derivatives SF/öx and dF/äy.  The calling of COLSA and COLSB is 
described below. 

Calling COLSA 

CALL C0LSA(N,MJFU,YCAP,YMW,ERY,FJlSER0,Q,M,X,EISX,RCOR,OT0T,ETAJIDENJ 
TIFIC) 

In the following list, I = input argument provided by calling 
routine and R = result set by COLSA. 

I-N = number of observations in each set (N ^ 5) 

I-M = number of parameters (M ^ 10) 

I-FU = name of subroutine for F(x,y) 

I-YCAP = approximate values of the parameters. Dimension: YCAP(lO) 

R-YLOW = YCAP + ETA = improved parameter values. Dimension: YLOW(lO) 

R-ERY = standard errors of YLOW. Dimension: ERY(lO) 

R-ERZERO = standard error of weight one (associated with cofactor 
matrix Q,) 

R-Q = cofactor matrix of YLÖW. Dimension: Q(l0,10) 

I-NR = number of sets observed (NR ^ 1000) 

I-X = observations. Dimension:  X(5,1000) 

I-ERZX = standard error associated with each set. Dimension: ERZX(lOOO) 

I-RCOR = cofactor matrices of observation sets. Dimension: RCOR(5,5,1000) 

R-NTOT  = number of valid observation sets. Normally NT0T=NR; see 
description of FU - subroutine. 

R-ETA   = corrections of YCAP. Dimension: ETA(10) 

I-IDEN  _ alphanumeric identifications of observation sets. 
I-TIFIC "  Dimension:  IDEN(lOOO), TIFIC(lOOO) 

The results of COLSA are printed in a self-explaining way. The 
following symbols are used by the routines for printouts: 
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X = observations 

X + KSI = corrected observations 

Y = approximations of parameters 

Y + ETA = corrected parameters 

G = weight of observation set 

F(X,Y + ETA) = constraint function with corresponding 
arguments (Equation (l)). 

There is no checking by COLSA whether N or M exceeds 5 or 10* 
respectively. Also, the value of NR is not checked to see if it 
satisfies M < NR £  1000. 

Programming F(x,y) 

The constraint function is entered by COLSA and COLSB as follows 
CALL FU(X,Y,FVA,A,B,L,NMES) where 

I-X   = observations. Dimension: X(5*1000) 

I-Y   = parameter vector. Dimension: Y(lO) 

R-FVA = F(x1,...,xn i yv...ym) 

R-A   = SF/dx. Dimension: A(5) 

R-B   = SF/öy.  Dimension:  B(lO) 

I-L   = number of set. The arguments xn.....x are: 
1    n 

x± =  X(1,L), x2 = X(2,L),.o.,xn = X(N,L) 

R-NMES = error message indicator. NMES = 1 if the function or 
its derivatives cannot be computed with the 
arguments given.  If this happens, COLSA will print 
a comment and the identification of the corresponding 
set and reduce the total number of valid sets, 
NTOT by one. 

Calling COLSB 

CALL COLSBCN^M^FU^YCAP^YLOW^ERY^ERZERO^Q^NR^X^ERZX^RCOR^ETA^IDEN^TIFIC) 

The arguments of COLSB are the same as those of COLSA, except NTOT 
is not an argument of COLSB. In contrast to COLSA, all COLSB arguments 
are of input type. Normally they will have the values furnished by the 
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last call of COLSA. All output of COLSB is on the printer (in 
self-explaining manner) and plotter tape. The plotted information 
includes the frequency distribution, cumulative histogram and probit 
diagram of the weights of F(X,Y + ETA).  For comparison the corresponding 
number distributions and normal distributions are included.  The printed 
information includes lists of sets with large errors, surveys about the 
corrections and their distributions and some numerical tests for 
accuracy and randomness. 

Subroutines Used 

The following names are names of subroutines used by COLSA and 
COLSB. 

CHOLES - cholesky algorithm routine for solving normal equations 
PLOCOB - plotting routine used by COLSB 

PLODIS 
FREDIS 
CUMMIS    subroutines used by PLOCOB 
PRODIA 
PROBIT 

ERF(X) - function routine furnishing normal distribution 
function (error integral) 

PLTCCA 
PLTCCT 
PLTCCD    plotter subroutines. 
PLTCCS 
PLTCCB 

NLPROG (Taken from BRL Memorandum Report No. 1958) 

In this section instructions to use the NLPROG programs will be 
given. These instructions will usually be given as if POWELL were the 
minimizing method. The necessary modification for the other minimizing 
subroutines will be noted. 

The problem we wish to solve is:  Minimize 

\T 
F(X)       X = (x1,x2,...,xN)- 

subject to 

R.(X) s 0   1=1,2,..., NIC 
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and 

R.(X) =0   i=NIC+l, NIC+2,...,NC. 

NLPROG actually tries to minimize the function 

r-,NEC 1  rnNC 
P(X,pk) = F(X) + pk^=1 1/R.(X) + (l/p/) ^.=NIC+1 R.(X) 

NEC 
for pR = pv   p2 = P-L/RATIO, p3 = p^RATIO,... until PL 2J_=1 l/R±(X) < 9. 

NLPROG is really a set of subroutines the names of which should be 
avoided in other programming. A list of the subroutine names used in 
NLEROG with POWELL follows. The brief explanation with them assumes 
that X and the previous X used both satisfy all the inequality constraints. 

NLPROG - This subroutine is the main routine for this 
collection of subroutines. 

SUBPRO - A buffer between NLPROG and the minimizing subroutine. 

POWELL - Minimizing method. 

LINMIN - Univariate minimization scheme:  find S for which 
P(XI+S«V,p) is a minimum (or improved 
sufficiently). This uses POFS to evaluate P. 

POFS  - Finds X = XI + S-V and uses POFX to find P(X,p). 
This also keeps track of the X which minimizes 
P(X,p), say XMIN, and the functions of XMIN; 
R.(XMIN) (i=l,2,...,NC), P(XMIN,p), G(XMIN,p) and 

F(XMIN).  If X is not in the accepted region 

P(X,p) is set to 1015°. 

POFX  - Controls computation of R.(X) (i=l,2,...,NC); 
F(X), P(X,p), and     x 

rnNIC 

Li ^v G(X,p) = P(X,p) -2p ^ 1/R.(X). 

OUTPUT - Prints F(XMIN), P(XMIN,p), G(XMIN,p), p, (P-G)/2, 
XMIN, and R.(XMIN) (j=l,2,...,NC). 

J 

In addition, the user must code a subroutine, EVAL(l), which puts F(X) 
I > 
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POWELL, LINMIN is dropped from the package.  If FLETCH is used in place 
of POWELL the subroutine DPBYDX is added and the coder must add the 
subroutine DERIV(l) where if I = 0, DRDX(j) = dF(X)/dx. (j=l,2,...,N) 

and if I > 0, DRDX(j) = 9R (X)/dx. (j=l,2,...,N).  If NEWTON is used 

in place of POWELL, the DERIV(l) subroutine must also compute second 

derivatives:  If I = 0, DDR(j,k) = 52F(X)/dx .öX (J=1,2,...,N; 
P     3     k 

k=l,2,...,N).  If I > 0, DDR(j,k) = öTR];(X)/9x .dx^  (j=l,2,...,N; 

k=l,2,...,N). 

The original plan was to code up different minimization schemes 
and change only SUBPRO to use them. Actually the main control 
subroutine NLPROG is slightly different for each of the four 
minimization schemes and the LINMIN for POWELL is different than that 
used with FLETCH and NEWTON. 

Blank COMMON is used to identify all the numbers which are used, 
supplied, or needed by the MAIN program, EVAL(l), or DERIV(l).  One 
labeled COMMON, called SUB, is used by NLPROG. The blank common list 
for NEWTON is (N,NC,NIC,X(lOO),EPS(l00),Q(l00),RH0,RATIO,THETA,NREFET, 
NRH0RP,F,R(200),IPR0P,DRDX(100),DDR(100,100)). 

N      - number of variables. N ^ 100. 

NC      - number of constraints.  0 ^ NC ^ 200. 

NIC     - number of inequality constraints. NIC < NC s 200. 

X(lOO)  - variables. An initial guess must be put here. The 
current value of X is here at other times. 

EPS(lOO) - acceptable absolute error in variables.  NLPROG 
may not attain this accuracy.  It does check 
that a change of EPS(i) in any one x(i) will not 
reduce the final P(X,p). EPS(i) > 0. 

Q(lOO)  - initial search steps (not too critical). The 
approximate errors in the initial x. are 
recommended. 

RHO     - p.  control parameter,  p > 0. 

RATIO   - p.   = p./RATIO.  RATIO > 1  (Recommend 

k  s RATIO S 16.) 

THETA   - 9. final convergence parameter. 

NREPET  - number of times to repeat minimization.  (Optional) 
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NRHORP  - number of p's to repeat for each repetition of 
minimization.  If pT is the value of p when 

Li 

p / . l/R.(X) < 9 the minimization is restarted 

with p = p_. RATIO(NRHQRp-1). The purpose of 
Li 

this is to push the X which satisfies P(X,p) away 
from the boundary of the region {X|R.(X) > 0, 

i=l,2,...,NIC}. However if there are no 
inequality constraints, only equality constraints, 
a negative or zero NRHORP would reduce p and force 
closer satisfaction of the equality constraints. 

F       - function to be minimized. 

R(200)  - constraints.  (The NIC inequality constraints must 
be stored first.) 

IPROP   - controls use of OUTPUT. 
0 - no prints (except errors) 
1 - print initial values and the solution of each 

subproblem. 
2 - Print each cycle result 
5 - Print each linear minimum.  (IPROP = 1 is 

recommended. This gives a fair outline of 
the course of the problem.) 

DRDX(lOO)- Partial derivatives of F or R_ with respect to x. 
I l 

(This array is not needed for POWELL or HOOKE.) 

DDR(100,100)- Second partial derivatives of F or R with respect 

to x. and x.. This matrix is symmetric but must 

be completely filled by DERIV(l) (This array is 
needed only if NEWTON is used.) 

The quantities starting with N or I are integers. The rest are 
floating point numbers.  This set of blank COMMON must precede the users 
programs. 

Before calling NLPROG, the user must store N, NC, NIC, and initial 
values of X(l), W(l), and EPS(l) (l=l,2,...,N). He must also store 
RHO, RATIO, THETA, IPROP, and if desired, NREPET and NRHORP.  He must 
supply the subroutine EVAL(l) and, if FLETCH or NEWTON are used, the 
user must also supply the appropriate DERIV(l) subroutine. 
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When NLPROG returns control to the main program, X(l) 1=1.2,...,N 
contains the solution X, RHO has the final value of p, F = F(XJ, and 
R(j) = RT(X) J=l,2,...,NC. The numbers in N,NC,NIC,EPS(l),RATIO,THETA, 

NRHORP, and IPROP are not changed by NLPROG. 

Comments 

The need for some preliminary analysis of minimization problems 
cannot be overstressed. All too frequently we mechanically prepare a 
program and discover, while trying to code check the program, that there 
is an obvious solution; or worse that there is no finite solution. 
Further, the preliminary analysis should help select reasonable starting 
values.  If the initial X does not satisfy the inequality constraints 
NLPROG will search for an X that does. However, this X may be so remote 
from the desired solution that the program will take a long time to 
reach the solution. 

TO 
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